RESUMEN
SALM1 (SALM (synaptic adhesion-like molecule), also known as LRFN2 (leucine rich repeat and fibronectin type III domain containing), is a postsynaptic density (PSD)-95-interacting synaptic adhesion molecule implicated in the regulation of NMDA receptor (NMDAR) clustering largely based on in vitro data, although its in vivo functions remain unclear. Here, we found that mice lacking SALM1/LRFN2 (Lrfn2-/- mice) show a normal density of excitatory synapses but altered excitatory synaptic function, including enhanced NMDAR-dependent synaptic transmission but suppressed NMDAR-dependent synaptic plasticity in the hippocampal CA1 region. Unexpectedly, SALM1 expression was detected in both glutamatergic and GABAergic neurons and Lrfn2-/- CA1 pyramidal neurons showed decreases in the density of inhibitory synapses and the frequency of spontaneous inhibitory synaptic transmission. Behaviorally, ultrasonic vocalization was suppressed in Lrfn2-/- pups separated from their mothers and acoustic startle was enhanced, but locomotion, anxiety-like behavior, social interaction, repetitive behaviors, and learning and memory were largely normal in adult male Lrfn2-/- mice. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, and social communication and startle behaviors in mice.SIGNIFICANCE STATEMENT Synaptic adhesion molecules regulate synapse development and function, which govern neural circuit and brain functions. The SALM/LRFN (synaptic adhesion-like molecule/leucine rich repeat and fibronectin type III domain containing) family of synaptic adhesion proteins consists of five known members for which the in vivo functions are largely unknown. Here, we characterized mice lacking SALM1/LRFN2 (SALM1 KO) known to associate with NMDA receptors (NMDARs) and found that these mice showed altered NMDAR-dependent synaptic transmission and plasticity, as expected, but unexpectedly also exhibited suppressed inhibitory synapse development and synaptic transmission. Behaviorally, SALM1 KO pups showed suppressed ultrasonic vocalization upon separation from their mothers and SALM1 KO adults showed enhanced responses to loud acoustic stimuli. These results suggest that SALM1/LRFN2 regulates excitatory synapse function, inhibitory synapse development, social communication, and acoustic startle behavior.
Asunto(s)
Glicoproteínas de Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Reflejo de Sobresalto/fisiología , Vocalización Animal/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Conducta Social , Sinapsis/fisiología , Transmisión Sináptica/fisiologíaRESUMEN
Major depressive disorder (MDD) is one of the most common and disabling mental disorders that characterized by profound disturbances in emotional regulation, motivation, cognition, and the physiology of affected individuals. Although MDD was initially thought to be primarily triggered through neuronal dysfunction, the pathological alterations in astrocytic function have been previously reported in MDD. We report that chronic restraint stress (CRS) induces astrocyte activation and decreases expression of astrocytic mGluR5 in the hippocampal CA1 of susceptible mice exhibited depressive-like behaviors. Reducing expression of astrocytic mGluR5 in dorsal CA1 simulates CRS-induced depressive-like behaviors and impairs excitatory synaptic function in mice, while overexpression of astrocytic mGluR5 in dorsal CA1 rescues CRS-induced depressive-like traits and excitatory synaptic dysfunction. Thus, we provide direct evidence for an important role of astrocytic mGluR5 in producing the behavioral phenotypes of MDD, supporting astrocytic mGluR5 may serve as an effective therapeutic target for MDD.