Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31981491

RESUMEN

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Asunto(s)
Trastorno Autístico/genética , Corteza Cerebral/crecimiento & desarrollo , Secuenciación del Exoma/métodos , Regulación del Desarrollo de la Expresión Génica , Neurobiología/métodos , Estudios de Casos y Controles , Linaje de la Célula , Estudios de Cohortes , Exoma , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Neuronas/metabolismo , Fenotipo , Factores Sexuales , Análisis de la Célula Individual/métodos
2.
Brain ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769595

RESUMEN

Altered development and function of the prefrontal cortex (PFC) during adolescence is implicated in the origin of mental disorders. Deficits in the GABAergic system prominently contribute to these alterations. Nav1.1 is a voltage-gated Na+ channel critical for normal GABAergic activity. Here, we studied the role of Nav1.1 in PFC function and its potential relationship with the aetiology of mental disorders. Dysfunction of Nav1.1 activity in the medial PFC (mPFC) of adolescent mice enhanced the local excitation/inhibition ratio, resulting in epileptic activity, cognitive deficits and depressive-like behaviour in adulthood, along with a gene expression profile linked to major depressive disorder (MDD). Additionally, it reduced extracellular serotonin concentration in the dorsal raphe nucleus and brain-derived neurotrophic factor expression in the hippocampus, two MDD-related brain areas beyond the PFC. We also observed alterations in oscillatory activity and impaired hippocampal-mPFC coherence during sleep. Finally, we found reduced expression levels of SCN1A, the gene encoding Nav1.1, in post-mortem PFC samples from human MDD subjects. Collectively, our results provide a novel mechanistic framework linking adolescence-specific alterations in Nav1.1 function in the PFC to the pathogenesis of epilepsy and comorbidities such as cognitive impairment and depressive disorders.

3.
Neurobiol Dis ; 200: 106637, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142611

RESUMEN

Pathogenic missense mutation of the FGF12 gene is responsible for a variable disease phenotypic spectrum. Disease-specific therapies require precise dissection of the relationship between different mutations and phenotypes. The lack of a proper animal model hinders the investigation of related diseases, such as early-onset epileptic encephalopathy. Here, an FGF12AV52H mouse model was generated using CRISPR/Cas9 technology, which altered the A isoform without affecting the B isoform. The FGF12AV52H mice exhibited seizure susceptibility, while no spontaneous seizures were observed. The increased excitability in dorsal hippocampal CA3 neurons was confirmed by patch-clamp recordings. Furthermore, immunostaining showed that the balance of excitatory/inhibitory neurons in the hippocampus of the FGF12AV52H mice was perturbed. The increases in inhibitory SOM+ neurons and excitatory CaMKII+ neurons were heterogeneous. Moreover, the locomotion, anxiety levels, risk assessment behavior, social behavior, and cognition of the FGF12AV52H mice were investigated by elevated plus maze, open field, three-chamber sociability, and novel object tests, respectively. Cognition deficit, impaired risk assessment, and social behavior with normal social indexes were observed, implying complex consequences of V52H FGF12A in mice. Together, these data suggest that the function of FGF12A in neurons can be immediate or long-term and involves modulation of ion channels and the differentiation and maturation of neurons. The FGF12AV52H mouse model increases the understanding of the function of FGF12A, and it is of great importance for revealing the complex network of the FGF12 gene in physiological and pathological processes.


Asunto(s)
Fenotipo , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación Missense , Neuronas/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
4.
Semin Cell Dev Biol ; 118: 60-63, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33714681

RESUMEN

The prefrontal cortex (PFC) is a cortical structure involved in a variety of complex functions in the cognitive and affective domains. The intrinsic function of the PFC is defined by the interaction of local glutamatergic and GABAergic neurons and their modulation by long-range inputs. The ensuing interactions generate a ratio of excitation and inhibition (E-I) in each output neuron, a balance which is refined during the adolescent to adult transition. In this short review, we aim to describe how an increase in GABAergic transmission during adolescence modifies the E-I ratio in adults. We further discuss how this new setpoint may change the dynamics of PFC networks observed during the transition to adulthood.


Asunto(s)
Corteza Prefrontal/fisiología , Transmisión Sináptica/fisiología , Adolescente , Animales , Humanos
5.
Epilepsia ; 64(7): 1939-1950, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37133275

RESUMEN

OBJECTIVE: Focal epilepsy is thought to be a network disease, in which epileptiform activity can spread noncontiguously through the brain via highly interconnected nodes, or hubs, within existing networks. Animal models confirming this hypothesis are scarce, and our understanding of how distant nodes are recruited is also lacking. Whether interictal spikes (IISs) also create and reverberate through a network is not well understood. METHODS: We injected bicuculline into the S1 barrel cortex and employed multisite local field potential and Thy-1 and parvalbumin (PV) cell mesoscopic calcium imaging during IISs to monitor excitatory and inhibitory cells in two monosynaptically connected nodes and one disynaptically connected node: ipsilateral secondary motor area (iM2), contralateral S1 (cS1), and contralateral secondary motor area (cM2). Node participation was analyzed with spike-triggered coactivity maps. Experiments were repeated with 4-aminopyridine as an epileptic agent. RESULTS: We found that each IIS reverberated throughout the network, differentially recruiting both excitatory and inhibitory cells in all connected nodes. The strongest response was found in iM2. Paradoxically, node cM2, which was connected disynaptically to the focus, was recruited more intensely than node cS1, which was connected monosynaptically. The explanation for this effect could be found in node-specific excitatory/inhibitory (E/I) balance, as cS1 demonstrated greater PV inhibitory cell activation compared with cM2, where Thy-1 excitatory cells were more heavily recruited. SIGNIFICANCE: Our data show that IISs spread noncontiguously by exploiting fiber pathways that connect nodes in a distributed network and that E/I balance plays a critical role in node recruitment. This multinodal IIS network model can be used to investigate cell-specific dynamics in the spatial propagation of epileptiform activity.


Asunto(s)
Epilepsia , Animales , Encéfalo , Mapeo Encefálico , Bicuculina/farmacología , 4-Aminopiridina
6.
Glia ; 70(1): 106-122, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34498776

RESUMEN

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized primarily by impaired social communication and rigid, repetitive, and stereotyped behaviors. Many studies implicate abnormal synapse development and the resultant abnormalities in synaptic excitatory-inhibitory (E/I) balance may underlie many features of the disease, suggesting aberrant neuronal connections and networks are prone to occur in the developing autistic brain. Astrocytes are crucial for synaptic formation and function, and defects in astrocytic activation and function during a critical developmental period may also contribute to the pathogenesis of ASD. Here, we report that increasing hippocampal astrogenesis during development induces autistic-like behavior in mice and a concurrent decreased E/I ratio in the hippocampus that results from enhanced GABAergic transmission in CA1 pyramidal neurons. Suppressing the aberrantly elevated GABAergic synaptic transmission in hippocampal CA1 area rescues autistic-like behavior and restores the E/I balance. Thus, we provide direct evidence for a developmental role of astrocytes in driving the behavioral phenotypes of ASD, and our results support that targeting the altered GABAergic neurotransmission may represent a promising therapeutic strategy for ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Trastorno del Espectro Autista/genética , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Células Piramidales/fisiología , Transmisión Sináptica
7.
Cereb Cortex ; 31(4): 2013-2025, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279967

RESUMEN

Neuregulin-1 (NRG1) represents an important factor for multiple processes including neurodevelopment, brain functioning or cognitive functions. Evidence from animal research suggests an effect of NRG1 on the excitation-inhibition (E/I) balance in cortical circuits. However, direct evidence for the importance of NRG1 in E/I balance in humans is still lacking. In this work, we demonstrate the application of computational, biophysical network models to advance our understanding of the interaction between cortical activity observed in neuroimaging and the underlying neurobiology. We employed a biophysical neuronal model to simulate large-scale brain dynamics and to investigate the role of polymorphisms in the NRG1 gene (rs35753505, rs3924999) in n = 96 healthy adults. Our results show that G/G-carriers (rs3924999) exhibit a significant difference in global coupling (P = 0.048) and multiple parameters determining E/I-balance such as excitatory synaptic coupling (P = 0.047), local excitatory recurrence (P = 0.032) and inhibitory synaptic coupling (P = 0.028). This indicates that NRG1 may be related to excitatory recurrence or excitatory synaptic coupling potentially resulting in altered E/I-balance. Moreover, we suggest that computational modeling is a suitable tool to investigate specific biological mechanisms in health and disease.


Asunto(s)
Encéfalo/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Genotipo , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neurregulina-1/genética , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Neurregulina-1/metabolismo , Polimorfismo de Nucleótido Simple/genética , Sinapsis/genética , Sinapsis/metabolismo , Adulto Joven
8.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35409253

RESUMEN

Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that include a variety of forms and clinical phenotypes. This heterogeneity complicates the clinical and experimental approaches to ASD etiology and pathophysiology. To date, a unifying theory of these diseases is still missing. Nevertheless, the intense work of researchers and clinicians in the last decades has identified some ASD hallmarks and the primary brain areas involved. Not surprisingly, the areas that are part of the so-called "social brain", and those strictly connected to them, were found to be crucial, such as the prefrontal cortex, amygdala, hippocampus, limbic system, and dopaminergic pathways. With the recent acknowledgment of the cerebellar contribution to cognitive functions and the social brain, its involvement in ASD has become unmistakable, though its extent is still to be elucidated. In most cases, significant advances were made possible by recent technological developments in structural/functional assessment of the human brain and by using mouse models of ASD. Mouse models are an invaluable tool to get insights into the molecular and cellular counterparts of the disease, acting on the specific genetic background generating ASD-like phenotype. Given the multifaceted nature of ASD and related studies, it is often difficult to navigate the literature and limit the huge content to specific questions. This review fulfills the need for an organized, clear, and state-of-the-art perspective on cerebellar involvement in ASD, from its connections to the social brain areas (which are the primary sites of ASD impairments) to the use of monogenic mouse models.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Encéfalo/metabolismo , Cerebelo/metabolismo , Cognición , Modelos Animales de Enfermedad , Ratones
9.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012647

RESUMEN

Stroke is one of the leading causes of death and disability in the world, of which ischemia accounts for the majority. There is growing evidence of changes in synaptic connections and neural network functions in the brain of stroke patients. Currently, the studies on these neurobiological alterations mainly focus on the principle of glutamate excitotoxicity, and the corresponding neuroprotective strategies are limited to blocking the overactivation of ionic glutamate receptors. Nevertheless, it is disappointing that these treatments often fail because of the unspecificity and serious side effects of the tested drugs in clinical trials. Thus, in the prevention and treatment of stroke, finding and developing new targets of neuroprotective intervention is still the focus and goal of research in this field. In this review, we focus on the whole processes of glutamatergic synaptic transmission and highlight the pathological changes underlying each link to help develop potential therapeutic strategies for ischemic brain damage. These strategies include: (1) controlling the synaptic or extra-synaptic release of glutamate, (2) selectively blocking the action of the glutamate receptor NMDAR subunit, (3) increasing glutamate metabolism, and reuptake in the brain and blood, and (4) regulating the glutamate system by GABA receptors and the microbiota-gut-brain axis. Based on these latest findings, it is expected to promote a substantial understanding of the complex glutamate signal transduction mechanism, thereby providing excellent neuroprotection research direction for human ischemic stroke (IS).


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Accidente Cerebrovascular , Ácido Glutámico/metabolismo , Humanos , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Receptores de Glutamato/metabolismo , Accidente Cerebrovascular/metabolismo , Transmisión Sináptica
10.
J Neurosci ; 40(36): 6854-6871, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32801156

RESUMEN

Astrocytes are implicated in synapse formation and elimination, which are associated with developmental refinements of neuronal circuits. Astrocyte dysfunctions are also linked to synapse pathologies associated with neurodevelopmental disorders and neurodegenerative diseases. Although several astrocyte-derived secreted factors are implicated in synaptogenesis, the role of contact-mediated glial-neuronal interactions in synapse formation and elimination during development is still unknown. In this study, we examined whether the loss or overexpression of the membrane-bound ephrin-B1 in astrocytes during postnatal day (P) 14-28 period would affect synapse formation and maturation in the developing hippocampus. We found enhanced excitation of CA1 pyramidal neurons in astrocyte-specific ephrin-B1 KO male mice, which coincided with a greater vGlut1/PSD95 colocalization, higher dendritic spine density, and enhanced evoked AMPAR and NMDAR EPSCs. In contrast, EPSCs were reduced in CA1 neurons neighboring ephrin-B1-overexpressing astrocytes. Overexpression of ephrin-B1 in astrocytes during P14-28 developmental period also facilitated evoked IPSCs in CA1 neurons, while evoked IPSCs and miniature IPSC amplitude were reduced following astrocytic ephrin-B1 loss. Lower numbers of parvalbumin-expressing cells and a reduction in the inhibitory VGAT/gephyrin-positive synaptic sites on CA1 neurons in the stratum pyramidale and stratum oriens layers of KO hippocampus may contribute to reduced inhibition and higher excitation. Finally, dysregulation of excitatory/inhibitory balance in KO male mice is most likely responsible for impaired sociability observed in these mice. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits.SIGNIFICANCE STATEMENT This report establishes a link between astrocytes and the development of excitatory and inhibitory balance in the mouse hippocampus during early postnatal development. We provide new evidence that astrocytic ephrin-B1 differentially regulates development of excitatory and inhibitory circuits in the hippocampus during early postnatal development using a multidisciplinary approach. The ability of astrocytic ephrin-B1 to influence both excitatory and inhibitory synapses during development can potentially contribute to developmental refinement of neuronal circuits and associated behaviors. Given widespread and growing interest in the astrocyte-mediated mechanisms that regulate synapse development, and the role of EphB receptors in neurodevelopmental disorders, these findings establish a foundation for future studies of astrocytes in clinically relevant conditions.


Asunto(s)
Astrocitos/metabolismo , Efrina-B1/metabolismo , Potenciales Postsinápticos Excitadores , Hipocampo/metabolismo , Potenciales Postsinápticos Inhibidores , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Efrina-B1/genética , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/fisiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Piramidales/metabolismo , Células Piramidales/fisiología , Conducta Social , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
11.
J Neurosci ; 40(11): 2215-2227, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988060

RESUMEN

Manipulations that enhance GABAergic inhibition have been associated with improved behavioral phenotypes in autism models, suggesting that autism may be treated by correcting underlying deficits of inhibition. Interneuron transplantation is a method for increasing recipient synaptic inhibition, and it has been considered a prospective therapy for conditions marked by deficient inhibition, including neuropsychiatric disorders. It is unknown, however, whether interneuron transplantation may be therapeutically effective only for conditions marked by reduced inhibition, and it is also unclear whether transplantation improves behavioral phenotypes solely by normalizing underlying circuit defects. To address these questions, we studied the effects of interneuron transplantation in male and female mice lacking the autism-associated gene, Pten, in GABAergic interneurons. Pten mutant mice exhibit social behavior deficits, elevated synaptic inhibition in prefrontal cortex, abnormal baseline and social interaction-evoked electroencephalogram (EEG) signals, and an altered composition of cortical interneuron subtypes. Transplantation of wild-type embryonic interneurons from the medial ganglionic eminence into the prefrontal cortex of neonatal Pten mutants rescued social behavior despite exacerbating excessive levels of synaptic inhibition. Furthermore, transplantation did not normalize recipient EEG signals measured during baseline states. Interneuron transplantation can thus correct behavioral deficits even when those deficits are associated with elevated synaptic inhibition. Moreover, transplantation does not exert therapeutic effects solely by restoring wild-type circuit states. Our findings indicate that interneuron transplantation could offer a novel cell-based approach to autism treatment while challenging assumptions that effective therapies must reverse underlying circuit defects.SIGNIFICANCE STATEMENT Imbalances between neural excitation and inhibition are hypothesized to contribute to the pathophysiology of autism. Interneuron transplantation is a method for altering recipient inhibition, and it has been considered a prospective therapy for neuropsychiatric disorders, including autism. Here we examined the behavioral and physiological effects of interneuron transplantation in a mouse genetic model of autism. They demonstrate that transplantation rescues recipient social interaction deficits without correcting a common measure of recipient inhibition, or circuit-level physiological measures. These findings demonstrate that interneuron transplantation can exert therapeutic behavioral effects without necessarily restoring wild-type circuit states, while highlighting the potential of interneuron transplantation as an autism therapy.


Asunto(s)
Trastorno Autístico/cirugía , Trasplante de Tejido Encefálico , Trasplante de Tejido Fetal , Neuronas GABAérgicas/fisiología , Interneuronas/trasplante , Inhibición Neural/fisiología , Fosfohidrolasa PTEN/deficiencia , Conducta Social , Animales , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Modelos Animales de Enfermedad , Electroencefalografía , Conducta Exploratoria , Femenino , Masculino , Aprendizaje por Laberinto , Eminencia Media/citología , Eminencia Media/embriología , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/fisiología , Técnicas de Placa-Clamp , Fenotipo , Corteza Prefrontal/fisiopatología , Distribución Aleatoria , Sinapsis/fisiología
12.
J Neurosci ; 40(27): 5208-5213, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32457075

RESUMEN

The endogenous neurotransmitter acetylcholine (ACh) is known to affect the excitatory/inhibitory (E/I) balance of primate visual cortex, enhancing feedforward thalamocortical gain while suppressing corticocortical synapses. Recent advances in the study of the human visual system suggest that ACh is a likely component underlying interocular interactions. However, our understanding of its precise role in binocular processes is currently lacking. Here we use binocular rivalry as a probe of interocular dynamics to determine ACh's effects, via the acetylcholinesterase inhibitor (AChEI) donepezil, on the binocular visual system. A total of 23 subjects (13 male) completed two crossover experimental sessions where binocular rivalry measurements were obtained before and after taking either donepezil (5 mg) or a placebo (lactose) pill. We report that enhanced cholinergic potentiation attenuates perceptual suppression during binocular rivalry, reducing the overall rate of interocular competition while enhancing the visibility of superimposition mixed percepts. Considering recent evidence that perceptual suppression during binocular rivalry is causally modulated by the inhibitory neurotransmitter GABA, our results suggest that cholinergic activity counteracts the effect of GABA with regards to interocular dynamics and may modulate the inhibitory drive within the visual cortex.SIGNIFICANCE STATEMENT Our research demonstrates that the cholinergic system is implicated in modulating binocular interactions in the human visual cortex. Potentiating the transmission of acetylcholine (ACh) via the cholinergic drug donepezil reduces the extent to which the eyes compete for perceptual dominance when presented two separate, incongruent images.


Asunto(s)
Sistema Nervioso Parasimpático/fisiología , Visión Binocular/fisiología , Acetilcolina/farmacología , Adulto , Colinérgicos/farmacología , Inhibidores de la Colinesterasa/farmacología , Estudios Cruzados , Donepezilo/farmacología , Femenino , Lateralidad Funcional/efectos de los fármacos , Humanos , Masculino , Sistema Nervioso Parasimpático/efectos de los fármacos , Estimulación Luminosa , Desempeño Psicomotor/efectos de los fármacos , Disparidad Visual , Visión Binocular/efectos de los fármacos , Adulto Joven , Ácido gamma-Aminobutírico/fisiología
13.
J Neurosci Res ; 99(12): 3339-3353, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34747522

RESUMEN

System xc- (Sxc- ) is a heteromeric antiporter (L-cystine/L-glutamate exchanger) expressed predominately on astrocytes in the central nervous system. Its activity contributes importantly to the maintenance of the ambient extracellular glutamate levels, as well as, to cellular redox homeostasis. Since alterations in glutamate levels and redox modifications could cause structural changes, we analyzed gross regional morphology of thionin-stained brain sections and cellular and subcellular morphology of Golgi-Cox stained layer V pyramidal neurons in the primary motor cortex (PM1) of mice naturally null for SLC7A11 (SLC7A11sut/sut )-the gene that encodes the substrate specific light chain (xCT) for Sxc- . Intriguingly, in comparison to age- and sex-matched wild-type (SLC7A11+/+ ) littermate controls, we found morphologic changes-including increased dendritic complexity and mushroom spine area in males and reduced corpus callosum and soma size in females-that have previously been described, in each case, as morphological correlates of excitability. Consistent with this, we found that both male and female SLC7A11sut/sut mice had lower convulsive seizure thresholds and greater seizure severity than their sex-matched wild-type (SLC7A11+/+ ) littermates after acute challenge with two pharmacologically distinct chemoconvulsants: the Glu receptor agonist, kainic acid (KA), or the GABAA receptor antagonist, pentylenetetrazole (PTZ). These results suggest that the loss of Sxc- signaling in males and females perturbs excitatory/inhibitory (E/I) balance in vivo, potentially through its regulation of cellular and subcellular morphology.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Cistina , Ácido Glutámico , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Antiportadores , Encéfalo/metabolismo , Cistina/metabolismo , Femenino , Masculino , Ratones
14.
Epilepsia ; 62(4): 935-940, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33534145

RESUMEN

Kaila, Löscher, and colleagues report that phenobarbital (PHB) and midazolam (MDZ) attenuate neonatal seizures following birth asphyxia, but the former only when applied before asphyxia and the latter before or after the triggering insult. In contrast, the NKCC1 chloride importer antagonist bumetanide (BUM) had no effect whether applied alone or with PHB. The observations are compelling and in accord with earlier studies. However, there are several general issues that deserve discussion. What is the clinical relevance of these data and the validity of animal models of encephalopathic seizures? Why is it that although they act on similar targets, these agents have different efficacy? Are both PHB and MDZ actions restricted to γ-aminobutyric acidergic (GABAergic) mechanisms? Why is BUM inefficient in attenuating seizures but capable of reducing the severity of other brain disorders? We suggest that the relative failure of antiepileptic drugs (AEDs) to treat this severe life-threatening condition is in part explicable by the recurrent seizures that shift the polarity of GABA, thereby counteracting their effects on their target. AEDs might be efficient after a few seizures but not recurrent ones. In addition, PHB and MDZ actions are not limited to GABA signals. BUM efficiently attenuates autism symptomatology notably in patients with tuberous sclerosis but does not reduce the recurrent seizures, illustrating the uniqueness of epilepsies. Therefore, the efficacy of AEDs to treat babies with encephalopathic seizures will depend on the history and severity of the seizures prior to their administration, challenging a universal common underlying mechanism.


Asunto(s)
Bumetanida , Epilepsia , Animales , Anticonvulsivantes/uso terapéutico , Bumetanida/uso terapéutico , Epilepsia/tratamiento farmacológico , Humanos , Midazolam/uso terapéutico , Fenobarbital/uso terapéutico , Prohibitinas , Convulsiones/tratamiento farmacológico , Miembro 2 de la Familia de Transportadores de Soluto 12
15.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884752

RESUMEN

Human and animal studies have elucidated the apparent neurodevelopmental effects resulting from neonatal anesthesia. Observations of learning and behavioral deficits in children, who were exposed to anesthesia early in development, have instigated a flurry of studies that have predominantly utilized animal models to further interrogate the mechanisms of neonatal anesthesia-induced neurotoxicity. Specifically, while neonatal anesthesia has demonstrated its propensity to affect multiple cell types in the brain, it has shown to have a particularly detrimental effect on the gamma aminobutyric acid (GABA)ergic system, which contributes to the observed learning and behavioral deficits. The damage to GABAergic neurons, resulting from neonatal anesthesia, seems to involve structure-specific changes in excitatory-inhibitory balance and neurovascular coupling, which manifest following a significant interval after neonatal anesthesia exposure. Thus, to better understand how neonatal anesthesia affects the GABAergic system, we first review the early development of the GABAergic system in various structures that have been the focus of neonatal anesthesia research. This is followed by an explanation that, due to the prolonged developmental curve of the GABAergic system, the entirety of the negative effects of neonatal anesthesia on learning and behavior in children are not immediately evident, but instead take a substantial amount of time (years) to fully develop. In order to address these concerns going forward, we subsequently offer a variety of in vivo methods which can be used to record these delayed effects.


Asunto(s)
Anestesia General/efectos adversos , Neuronas GABAérgicas/fisiología , Ácido gamma-Aminobutírico/fisiología , Anestesia General/métodos , Animales , Animales Recién Nacidos , Apoptosis , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/fisiología , Trastornos de la Conducta Infantil/etiología , Preescolar , Fenómenos Electrofisiológicos , Humanos , Lactante , Recién Nacido , Interneuronas/fisiología , Discapacidades para el Aprendizaje/etiología , Modelos Neurológicos , Neuroimagen , Síndromes de Neurotoxicidad/etiología
16.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808762

RESUMEN

Epilepsy is characterized by recurrent seizures due to abnormal hyperexcitation of neurons. Recent studies have suggested that the imbalance of excitation and inhibition (E/I) in the central nervous system is closely implicated in the etiology of epilepsy. In the brain, GABA is a major inhibitory neurotransmitter and plays a pivotal role in maintaining E/I balance. As such, altered GABAergic inhibition can lead to severe E/I imbalance, consequently resulting in excessive and hypersynchronous neuronal activity as in epilepsy. Phospholipase C (PLC) is a key enzyme in the intracellular signaling pathway and regulates various neuronal functions including neuronal development, synaptic transmission, and plasticity in the brain. Accumulating evidence suggests that neuronal PLC is critically involved in multiple aspects of GABAergic functions. Therefore, a better understanding of mechanisms by which neuronal PLC regulates GABAergic inhibition is necessary for revealing an unrecognized linkage between PLC and epilepsy and developing more effective treatments for epilepsy. Here we review the function of PLC in GABAergic inhibition in the brain and discuss a pathophysiological relationship between PLC and epilepsy.


Asunto(s)
Epilepsia/etiología , Epilepsia/metabolismo , Receptores de GABA/metabolismo , Fosfolipasas de Tipo C/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Biomarcadores , Susceptibilidad a Enfermedades , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Antagonistas del GABA/farmacología , Antagonistas del GABA/uso terapéutico , Humanos , Isoenzimas , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica
17.
J Neurosci ; 39(13): 2383-2397, 2019 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-30696733

RESUMEN

Autism spectrum disorders (ASDs) are pervasive neurodevelopmental conditions that often involve mutations affecting synaptic mechanisms. Recently, the involvement of cerebellum in ASDs has been suggested, but the underlying functional alterations remained obscure. We investigated single-neuron and microcircuit properties in IB2 (Islet Brain-2) KO mice of either sex. The IB2 gene (chr22q13.3 terminal region) deletion occurs in virtually all cases of Phelan-McDermid syndrome, causing autistic symptoms and a severe delay in motor skill acquisition. IB2 KO granule cells showed a larger NMDA receptor-mediated current and enhanced intrinsic excitability, raising the excitatory/inhibitory balance. Furthermore, the spatial organization of granular layer responses to mossy fibers shifted from a "Mexican hat" to a "stovepipe hat" profile, with stronger excitation in the core and weaker inhibition in the surround. Finally, the size and extension of long-term synaptic plasticity were remarkably increased. These results show for the first time that hyperexcitability and hyperplasticity disrupt signal transfer in the granular layer of IB2 KO mice, supporting cerebellar involvement in the pathogenesis of ASD.SIGNIFICANCE STATEMENT This article shows for the first time a complex set of alterations in the cerebellum granular layer of a mouse model [IB2 (Islet Brain-2) KO] of autism spectrum disorders. The IB2 KO in mice mimics the deletion of the corresponding gene in the Phelan-McDermid syndrome in humans. The changes reported here are centered on NMDA receptor hyperactivity, hyperplasticity, and hyperexcitability. These, in turn, increase the excitatory/inhibitory balance and alter the shape of center/surround structures that emerge in the granular layer in response to mossy fiber activity. These results support recent theories suggesting the involvement of cerebellum in autism spectrum disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Trastorno del Espectro Autista/fisiopatología , Cerebelo/fisiopatología , Neuronas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores , Femenino , Potenciales Postsinápticos Inhibidores , Masculino , Ratones Noqueados , Plasticidad Neuronal , Receptores AMPA/fisiología , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/fisiología
18.
Cereb Cortex ; 29(8): 3666-3682, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31237323

RESUMEN

FOXG1 syndrome is a severe encephalopathy that exhibit intellectual disability, emotional disorder, and limited social communication. To elucidate the contribution of somatostatin-expressing interneurons (SST-INs) to the cellular basis underlying FOXG1 syndrome, here, by crossing SST-cre with a Foxg1fl/fl line, we selectively ablated Foxg1. Loss of Foxg1 resulted in an obvious reduction in the number of SST-INs, accompanied by an altered ratio of subtypes. Foxg1-deficient SST-INs exhibited decreased membrane excitability and a changed ratio of electrophysiological firing patterns, which subsequently led to an excitatory/inhibitory imbalance. Moreover, cognitive defects, limited social interactions, and depression-like behaviors were detected in Foxg1 cKO mice. Treatment with low-dose of clonazepam effectively alleviated the defects. These results identify a link of SST-IN development to the aberrant emotion, cognition, and social capacities in patients. Our findings identify a novel role of Foxg1 in SST-IN development and put new insights into the cellular basis of FOXG1 syndrome.


Asunto(s)
Conducta Animal/fisiología , Cognición/fisiología , Depresión/genética , Emociones/fisiología , Factores de Transcripción Forkhead/genética , Interneuronas/metabolismo , Proteínas del Tejido Nervioso/genética , Conducta Social , Animales , Conducta Animal/efectos de los fármacos , Encefalopatías/genética , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Clonazepam/farmacología , Cognición/efectos de los fármacos , Emociones/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Moduladores del GABA/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Discapacidad Intelectual/genética , Interneuronas/efectos de los fármacos , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Trastorno de Comunicación Social/genética , Somatostatina/metabolismo , Síndrome
19.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322577

RESUMEN

d-serine is the major co-agonist of N-methyl-D-aspartate receptors (NMDAR) at CA3/CA1 hippocampal synapses, the activation of which drives long-term potentiation (LTP). The use of mice with targeted deletion of the serine racemase (SR) enzyme has been an important tool to uncover the physiological and pathological roles of D-serine. To date, some uncertainties remain regarding the direction of LTP changes in SR-knockout (SR-KO) mice, possibly reflecting differences in inhibitory GABAergic tone in the experimental paradigms used in the different studies. On the one hand, our extracellular recordings in hippocampal slices show that neither isolated NMDAR synaptic potentials nor LTP were altered in SR-KO mice. This was associated with a compensatory increase in hippocampal levels of glycine, another physiologic NMDAR co-agonist. SR-KO mice displayed no deficits in spatial learning, reference memory and cognitive flexibility. On the other hand, SR-KO mice showed a weaker LTP and a lower increase in NMDAR potentials compared to controls when GABAA receptors were pharmacologically blocked. Our results indicate that depletion of endogenous D-serine caused a reduced inhibitory activity in CA1 hippocampal networks, altering the excitatory/inhibitory balance, which contributes to preserve functional plasticity at synapses and to maintain related cognitive abilities.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Racemasas y Epimerasas/metabolismo , Aminoácidos/metabolismo , Animales , Electrofisiología , Hipocampo/metabolismo , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/fisiología , Ratones , Prueba del Laberinto Acuático de Morris , Plasticidad Neuronal/fisiología , Racemasas y Epimerasas/genética , Receptores de N-Metil-D-Aspartato/metabolismo
20.
J Neurophysiol ; 119(5): 1947-1961, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442555

RESUMEN

The circuit controlling visually guided behavior in nonmammalian vertebrates, such as Xenopus tadpoles, includes retinal projections to the contralateral optic tectum, where visual information is processed, and tectal motor outputs projecting ipsilaterally to hindbrain and spinal cord. Tadpoles have an intertectal commissure whose function is unknown, but it might transfer information between the tectal lobes. Differences in visual experience between the two eyes have profound effects on the development and function of visual circuits in animals with binocular vision, but the effects on animals with fully crossed retinal projections are not clear. We tested the effect of monocular visual experience on the visuomotor circuit in Xenopus tadpoles. We show that cutting the intertectal commissure or providing visual experience to one eye (monocular visual experience) is sufficient to disrupt tectally mediated visual avoidance behavior. Monocular visual experience induces asymmetry in tectal circuit activity across the midline. Repeated exposure to monocular visual experience drives maturation of the stimulated retinotectal synapses, seen as increased AMPA-to-NMDA ratios, induces synaptic plasticity in intertectal synaptic connections, and induces bilaterally asymmetric changes in the tectal excitation-to-inhibition ratio (E/I). We show that unilateral expression of peptides that interfere with AMPA or GABAA receptor trafficking alters E/I in the transfected tectum and is sufficient to degrade visuomotor behavior. Our study demonstrates that monocular visual experience in animals with fully crossed visual systems produces asymmetric circuit function across the midline and degrades visuomotor behavior. The data further suggest that intertectal inputs are an integral component of a bilateral visuomotor circuit critical for behavior. NEW & NOTEWORTHY The developing optic tectum of Xenopus tadpoles represents a unique circuit in which laterally positioned eyes provide sensory input to a circuit that is transiently monocular, but which will be binocular in the animal's adulthood. We challenge the idea that the two lobes of tadpole optic tectum function independently by testing the requirement of interhemispheric communication and demonstrate that unbalanced sensory input can induce structural and functional plasticity in the tectum sufficient to disrupt function.


Asunto(s)
Conducta Animal/fisiología , Plasticidad Neuronal/fisiología , Desempeño Psicomotor/fisiología , Retina/fisiología , Techo del Mesencéfalo/fisiología , Visión Binocular/fisiología , Visión Monocular/fisiología , Vías Visuales/fisiología , Xenopus laevis/fisiología , Animales , Larva/fisiología , Colículos Superiores/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA