Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 149(1)2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34989394

RESUMEN

Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.


Asunto(s)
Glándulas Exocrinas/anatomía & histología , Morfogénesis , Animales , Glándulas Exocrinas/embriología , Glándulas Exocrinas/fisiología , Humanos
2.
BMC Biol ; 22(1): 135, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38867210

RESUMEN

BACKGROUND: Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS: Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS: The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.


Asunto(s)
Artrópodos , Animales , Artrópodos/fisiología , Venenos de Artrópodos/química , Evolución Biológica , Transcriptoma , Filogenia
3.
Adv Exp Med Biol ; 1398: 225-249, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36717498

RESUMEN

Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.


Asunto(s)
Acuaporinas , Glándulas Exocrinas , Humanos , Acuaporinas/metabolismo , Acuaporinas/fisiología , Glándulas Duodenales/fisiología , Glándulas Mamarias Humanas/fisiología , Páncreas/fisiología , Glándulas Salivales/fisiología , Glándulas Exocrinas/metabolismo , Glándulas Exocrinas/fisiología
4.
Microsc Microanal ; 29(3): 1277-1288, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749679

RESUMEN

Colleterial glands of female insects are accessory glands responsible for producing secretions associated with egg-laying. Within Dictyoptera, they synthesize compounds of the ootheca. However, their morphology and role in termites are poorly understood. Here, we compared the morphology, development, and secretory activity of the colleterial glands between non- and egg-laying females of the pest termite Coptotermes gestroi under light and transmission electron microscopy. We also provide the first description of these glands for Rhinotermitidae. The glands are paired, divided into anterior and posterior units, which join in a common duct via basal trunks. They are highly developed within egg-laying females, especially the posterior gland, secreting glycoproteins to lubricate the genital chamber and/or stick the eggs together. Ultrastructure revealed glandular epithelia composed of bicellular units of Class 3, whose secretory activity varied between groups and units. Posterior gland of egg-laying females showed richness of mitochondria, rough endoplasmic reticulum, and secretory vesicles, including electron-dense secretory granules, indicating synthesis and transport of contents, especially proteins. The basal trunks were enfolded by muscles, supporting their role in conducting secretion. Morphophysiological modifications occur in the colleterial glands as females mature and lay eggs, and the mechanisms underlying the secretory cycle of the glands are discussed.


Asunto(s)
Cucarachas , Escarabajos , Isópteros , Femenino , Animales , Transporte Biológico , Epitelio
5.
Fetal Pediatr Pathol ; 42(4): 685-689, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36881016

RESUMEN

BACKGROUND: Skene's glands are the two largest paraurethral glands and the female homologue to the prostate glands. When their ducts become obstructed, cysts may be formed. This usually occurs in adult women. Most cases reported in pediatrics are neonatal, with a single report in a prepubertal girl. CASE REPORT: We present a 25-month-old girl with a 7 mm nontender, solid, oval, pink-orange paraurethral mass, with no change over a five-month period. Histopathology revealed the cyst to be lined with transitional epithelium consistent with a Skene's gland cyst. The child did well with no sequalae. CONCLUSION: We describe a Skene's gland cyst found in a prepubertal child.


Asunto(s)
Quistes , Masculino , Adulto , Recién Nacido , Femenino , Humanos , Niño , Preescolar , Quistes/diagnóstico , Epitelio
6.
Naturwissenschaften ; 109(2): 19, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35267095

RESUMEN

Pygidial gland secretions are used as repellent defensive allomones in ground beetles. We provide the first precise data on the chemical composition and antimicrobial potency of the secretion of the blue ground beetle, as well as on the morphology of its pygidial glands. The latter structures were not previously studied chemoecologically and morphologically, and we hypothesized that their secretion may have some antimicrobial action, as is the case with certain Carabus species. Gas chromatography-mass spectrometry (GC-MS) was used to identify methacrylic and angelic acids as dominant chemicals in the secretion from individuals of three populations of the blue ground beetle in Serbia. We tested its secretion against selected strains of medically important microorganisms. The secretion exibits antimicrobial action against certain bacterial species and all tested micromycetes. The most significant antifungal effect of the secretion was against Penicillium ochrochloron, which is more sensitive to the secretion than to commercial antifungal drugs ketoconazole and bifonazole. Bifonazole achieved minimum inhibitory concentrations against Trichoderma viride at more than three times higher value than did the secretion, indicating a significant antifungal effect of the secretion against this micromycete as well. Additionally, we tested commercially available standards of two dominant chemicals in the secretion to investigate their interaction and antimicrobial role in the secretion. Finally, we describe all glandular morpho-functional units of the blue ground beetle. Our results suggest that the secretion of the blue ground beetle may serve not only defensive but also antimicrobial functions, which likely aid the survival of this beetle in the microbial-rich forest litter habitat.


Asunto(s)
Antiinfecciosos , Escarabajos , Animales , Antiinfecciosos/farmacología , Bacterias , Secreciones Corporales/química , Escarabajos/química , Pruebas de Sensibilidad Microbiana
7.
J Chem Ecol ; 47(3): 334-349, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33689113

RESUMEN

Of the approximately one million described insect species, ground beetles (Coleoptera: Carabidae) have long captivated the attention of evolutionary biologists due to the diversity of defensive compounds they synthesize. Produced using defensive glands in the abdomen, ground beetle chemicals represent over 250 compounds including predator-deterring formic acid, which has evolved as a defensive strategy at least three times across Insecta. Despite being a widespread method of defense, formic acid biosynthesis is poorly understood in insects. Previous studies have suggested that the folate cycle of one-carbon (C1) metabolism, a pathway involved in nucleotide biosynthesis, may play a key role in defensive-grade formic acid production in ants. Here, we report on the defensive gland transcriptome of the formic acid-producing ground beetle Harpalus pensylvanicus. The full suite of genes involved in the folate cycle of C1 metabolism are significantly differentially expressed in the defensive glands of H. pensylvanicus when compared to gene expression profiles in the rest of the body. We also find support for two additional pathways potentially involved in the biosynthesis of defensive-grade formic acid, the kynurenine pathway and the methionine salvage cycle. Additionally, we have found an array of differentially expressed genes in the secretory lobes involved in the biosynthesis and transport of cofactors necessary for formic acid biosynthesis, as well as genes presumably involved in the detoxification of secondary metabolites including formic acid. We also provide insight into the evolution of the predominant gene family involved in the folate cycle (MTHFD) and suggest that high expression of folate cycle genes rather than gene duplication and/or neofunctionalization may be more important for defensive-grade formic acid biosynthesis in H. pensylvanicus. This provides the first evidence in Coleoptera and one of a few examples in Insecta of a primary metabolic process being co-opted for defensive chemical biosynthesis. Our results shed light on potential mechanisms of formic acid biosynthesis in the defensive glands of a ground beetle and provide a foundation for further studies into the evolution of formic acid-based chemical defense strategies in insects.


Asunto(s)
Formiatos/química , Formiatos/metabolismo , Animales , Hormigas , Secuencia de Bases , Conducta Animal , Vías Biosintéticas , Escarabajos , Glándulas Exocrinas/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Expresión Génica , Biblioteca de Genes , Masculino
8.
Microsc Microanal ; 27(1): 170-186, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33280633

RESUMEN

Thiamethoxam is a neonicotinoid that has been used to control insect pests. The literature reports a few behavioral studies evaluating the toxic effect of thiamethoxam in ants; however, there are scarce studies at the cellular level. The present research evaluated the effects of thiamethoxam in labial (LG) and mandibular glands (MG), fat bodies (FB), and Malpighian tubules (MT) of workers of Atta sexdens, using transmission electron microscopy. The duct and secretory cells of LG were profoundly affected, then the production of saliva can be compromised, as well as its quality and subsequent use. In MG, reservoir and canaliculi cells presented slight alterations; however, MG secretory cells presented vacuoles containing lamellar structures, increased lipid production, and a large amount of mitochondria, which may lead to organ's malfunctioning. The FB cell alterations do not seem enough to cause significant changes that lead to cell death. Prominent changes in MT, such as loss of the electron-dense concentric ring, increased smooth endoplasmic reticulum, loss of basal infolds, vacuoles containing mineralized granules, and lamellar structures associated with mitochondria, suggest that their excretory function is compromised. In conclusion, thiamethoxam acts not only in the nervous system but also contributes to systemic toxicity on the target organism.


Asunto(s)
Hormigas , Cuerpo Adiposo , Glándulas Salivales , Tiametoxam , Animales , Cuerpo Adiposo/efectos de los fármacos , Cuerpo Adiposo/ultraestructura , Insecticidas , Microscopía Electrónica de Transmisión , Mitocondrias , Saliva , Glándulas Salivales/efectos de los fármacos , Glándulas Salivales/ultraestructura
9.
Am J Physiol Gastrointest Liver Physiol ; 319(1): G74-G86, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538138

RESUMEN

The mechanism for segregation of cargo proteins into the regulated and constitutive secretory pathways in exocrine cells remains to be elucidated. We examined the transport of HaloTag proteins fused with full-length cystatin D (fCst5-Halo) or only its signal peptide (ssCst5-Halo) in parotid acinar cells. Although both fusion proteins were observed to be colocalized with amylase in the secretory granules, the coefficients for overlapping and correlation of fCst5-Halo with amylase were higher than those of ssCst5-Halo. The secretion of both the proteins was enhanced by the addition of the ß-adrenergic receptor agonist isoproterenol as well as endogenous amylase. In contrast, unstimulated secretion of ssCst5-Halo without isoproterenol was significantly higher than that of fCst5-Halo and amylase. Simulation analysis using a mathematical model revealed that a large proportion of ssCst5-Halo was secreted through the constitutive pathway, whereas fCst5-Halo was transported into the secretory granules more efficiently. Precipitation of fCst5-Halo from cell lysates was increased at a low pH, which may mimic the milieu of the trans-Golgi networks. These data suggest that the addition of a full-length sequence of cystatin D facilitates efficient selective transport into the regulated pathway by aggregation at low pH in the trans-Golgi network.NEW & NOTEWORTHY The mechanism underlying the segregation of cargo proteins to the regulated and constitutive secretory pathways in exocrine cells remains to be solved. We analyzed unstimulated secretion in salivary acinar cells by performing double-labeling experiments using HaloTag technology and computer simulation. It revealed that the majority of HaloTag with only signal peptide sequence was secreted through the constitutive pathway and that the addition of a full-length cystatin D sequence changed its sorting to the regulated pathway.


Asunto(s)
Células Acinares/metabolismo , Movimiento Celular/fisiología , Transporte de Proteínas/fisiología , Vías Secretoras/fisiología , Amilasas/metabolismo , Animales , Células Cultivadas , Exocitosis/fisiología , Glándula Parótida/metabolismo
10.
J Exp Biol ; 223(Pt Suppl 1)2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034048

RESUMEN

Across the Metazoa, the emergence of new ecological interactions has been enabled by the repeated evolution of exocrine glands. Specialized glands have arisen recurrently and with great frequency, even in single genera or species, transforming how animals interact with their environment through trophic resource exploitation, pheromonal communication, chemical defense and parental care. The widespread convergent evolution of animal glands implies that exocrine secretory cells are a hotspot of metazoan cell type innovation. Each evolutionary origin of a novel gland involves a process of 'gland cell type assembly': the stitching together of unique biosynthesis pathways; coordinated changes in secretory systems to enable efficient chemical release; and transcriptional deployment of these machineries into cells constituting the gland. This molecular evolutionary process influences what types of compound a given species is capable of secreting, and, consequently, the kinds of ecological interactions that species can display. Here, we discuss what is known about the evolutionary assembly of gland cell types and propose a framework for how it may happen. We posit the existence of 'terminal selector' transcription factors that program gland function via regulatory recruitment of biosynthetic enzymes and secretory proteins. We suggest ancestral enzymes are initially co-opted into the novel gland, fostering pleiotropic conflict that drives enzyme duplication. This process has yielded the observed pattern of modular, gland-specific biosynthesis pathways optimized for manufacturing specific secretions. We anticipate that single-cell technologies and gene editing methods applicable in diverse species will transform the study of animal chemical interactions, revealing how gland cell types are assembled and functionally configured at a molecular level.


Asunto(s)
Evolución Molecular , Glándulas Exocrinas , Animales , Secreciones Corporales , Feromonas
11.
Adv Exp Med Biol ; 1123: 151-164, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31016599

RESUMEN

Epithelial damage in the salivary gland (SG) resulting in irreversible dry mouth can be commonly induced by gamma radiation therapy. This radiation depletes the SG stem/progenitor cell niche slowing healing and natural gland regeneration. Biologists have been focused in understanding the development and differentiation of epithelial stem and progenitor cell niches during SG organogenesis. These organogenesis studies gave insights into novel cell-based therapies to recreate the three-dimensional (3D) salivary gland (SG) organ, recapitulate the SG native physiology, and restore saliva secretion. Such therapeutical strategies apply techniques that assemble, in a 3D organotypic culture, progenitor and stem cell lines to develop SG organ-like organoids or mini-transplants. Future studies will employ a combination of organoids, decellularized matrices, and smart biomaterials to create viable and functional SG transplants to repair the site of SG injury and reestablish saliva production.


Asunto(s)
Medicina Regenerativa/tendencias , Glándulas Salivales/crecimiento & desarrollo , Células Madre/citología , Ingeniería de Tejidos/tendencias , Diferenciación Celular , Humanos , Organoides , Glándulas Salivales/efectos de la radiación , Xerostomía/terapia
12.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 900-906, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27913208

RESUMEN

Store-operated calcium channels provide calcium signals to the cytoplasm of a wide variety of cell types. The basic components of this signaling mechanism include a mechanism for discharging Ca2+ stores (commonly but not exclusively phospholipase C and inositol 1,4,5-trisphosphate), a sensor in the endoplasmic reticulum that also serves as an activator of the plasma membrane channel (STIM1 and STIM2), and the store-operated channel (Orai1, 2 or 3). The advent of mice genetically altered to reduce store-operated calcium entry globally or in specific cell types has provided important tools to understand the functions of these widely encountered channels in specific and clinically important physiological systems. This review briefly discusses the history and cellular properties of store-operated calcium channels, and summarizes selected studies of their physiological functions in specific physiological or pathological contexts. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Asunto(s)
Canales de Calcio/fisiología , Animales , Calcio/metabolismo , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Ratones Transgénicos
13.
J Chem Ecol ; 44(7-8): 650-657, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29876722

RESUMEN

Cuticular hydrocarbons (CHCs) function as recognition compounds with the best evidence coming from social insects such as ants and honey bees. The major exocrine gland involved in hydrocarbon storage in ants is the post-pharyngeal gland (PPG) in the head. It is still not clearly understood where CHCs are stored in the honey bee. The aim of this study was to investigate the hydrocarbons and esters found in five major worker honey bee (Apis mellifera) exocrine glands, at three different developmental stages (newly emerged, nurse, and forager) using a high temperature GC analysis. We found the hypopharyngeal gland contained no hydrocarbons nor esters, and the thoracic salivary and mandibular glands only contained trace amounts of n-alkanes. However, the cephalic salivary gland (CSG) contained the greatest number and highest quantity of hydrocarbons relative to the five other glands with many of the hydrocarbons also found in the Dufour's gland, but at much lower levels. We discovered a series of oleic acid wax esters that lay beyond the detection of standard GC columns. As a bee's activities changed, as it ages, the types of compounds detected in the CSG also changed. For example, newly emerged bees have predominately C19-C23n-alkanes, alkenes and methyl-branched compounds, whereas the nurses' CSG had predominately C31:1 and C33:1 alkene isomers, which are replaced by a series of oleic acid wax esters in foragers. These changes in the CSG were mirrored by corresponding changes in the adults' CHCs profile. This indicates that the CSG may have a parallel function to the PPG found in ants acting as a major storage gland of CHCs. As the CSG duct opens into the buccal cavity the hydrocarbons can be worked into the comb wax and could help explain the role of comb wax in nestmate recognition experiments.


Asunto(s)
Conducta Animal/fisiología , Hidrocarburos/química , Glándulas Salivales/química , Alcanos/análisis , Alcanos/química , Alquenos/análisis , Alquenos/química , Animales , Abejas , Fraccionamiento Químico , Cromatografía de Gases , Hidrocarburos/análisis , Hidrocarburos/aislamiento & purificación , Isomerismo , Glándulas Salivales/metabolismo , Conducta Social
14.
Prostate ; 77(9): 970-983, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28401578

RESUMEN

BACKGROUND: Estrogens are critical players in prostate growth and disease. Estrogen therapy has been the standard treatment for advanced prostate cancer for several decades; however, it has currently been replaced by alternative anti-androgenic therapies. Additionally, studies of its action on prostate biology, resulting from an association between carcinogens and estrogen, at different stages of life are scarce or inconclusive about its protective and beneficial role on induced-carcinogenesis. Thus, the aim of this study was to determine whether estradiol exerts a protective and/or stimulatory role on N-methyl-N-nitrosurea-induced prostate neoplasms. METHODS: We adopted a rodent model that has been used to study induced-prostate carcinogenesis: the Mongolian gerbil. We investigated the occurrence of neoplasms, karyometric patterns, androgen and estrogen receptors, basal cells, and global methylation status in ventral and dorsolateral prostate tissues. RESULTS: Histopathological analysis showed that estrogen was able to slow tumor growth in both lobes after prolonged treatment. However, a true neoplastic regression was observed only in the dorsolateral prostate. In addition to the protective effects against neoplastic progression, estrogen treatment resulted in an epithelium that exhibited features distinctive from a normal prostate, including increased androgen-insensitive basal cells, high androgens and estrogen receptor positivity, and changes in DNA methylation patterns. CONCLUSIONS: Estrogen was able to slow tumor growth, but the epithelium exhibited features distinct from a normal prostatic epithelium, and this unstable microenvironment could trigger lesion recurrence over time.


Asunto(s)
Andrógenos , Estradiol , Próstata , Neoplasias de la Próstata , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Carcinógenos/farmacología , Daño del ADN/efectos de los fármacos , Progresión de la Enfermedad , Células Epiteliales/patología , Estradiol/metabolismo , Estradiol/farmacología , Masculino , Metilnitrosourea/farmacología , Próstata/efectos de los fármacos , Próstata/patología , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/fisiopatología , Neoplasias de la Próstata/prevención & control , Factores Protectores , Ratas
15.
Toxicol Pathol ; 45(5): 593-603, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28782456

RESUMEN

We report the identification, pathogenesis, and transmission of a novel polyomavirus in severe combined immunodeficient F344 rats with null Prkdc and interleukin 2 receptor gamma genes. Infected rats experienced weight loss, decreased fecundity, and mortality. Large basophilic intranuclear inclusions were observed in epithelium of the respiratory tract, salivary and lacrimal glands, uterus, and prostate gland. Unbiased viral metagenomic sequencing of lesioned tissues identified a novel polyomavirus, provisionally named Rattus norvegicus polyomavirus 2 (RatPyV2), which clustered with Washington University (WU) polyomavirus in the Wuki clade of the Betapolyomavirus genus. In situ hybridization analyses and quantitative polymerase chain reaction (PCR) results demonstrated viral nucleic acids in epithelium of respiratory, glandular, and reproductive tissues. Polyomaviral disease was reproduced in Foxn1rnu nude rats cohoused with infected rats or experimentally inoculated with virus. After development of RatPyV2-specific diagnostic assays, a survey of immune-competent rats from North American research institutions revealed detection of RatPyV2 in 7 of 1,000 fecal samples by PCR and anti-RatPyV2 antibodies in 480 of 1,500 serum samples. These findings suggest widespread infection in laboratory rat populations, which may have profound implications for established models of respiratory injury. Additionally, RatPyV2 infection studies may provide an important system to investigate the pathogenesis of WU polyomavirus diseases of man.


Asunto(s)
Infecciones por Polyomavirus , Poliomavirus , Infecciones Tumorales por Virus , Animales , Femenino , Pulmón/virología , Masculino , Metagenómica , Poliomavirus/genética , Poliomavirus/aislamiento & purificación , Poliomavirus/patogenicidad , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/transmisión , Infecciones por Polyomavirus/virología , Ratas , Análisis de Secuencia de ADN , Inmunodeficiencia Combinada Grave/complicaciones , Distribución Tisular , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/transmisión , Infecciones Tumorales por Virus/virología , Carga Viral/genética
16.
Adv Exp Med Biol ; 969: 63-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28258566

RESUMEN

Aquaporins (AQPs ) are expressed in most exocrine and endocrine secretory glands. Consequently, summarizing the expression and functions of AQPs in secretory glands represents a daunting task considering the important number of glands present in the body, as well as the number of mammalian AQPs - thirteen. The roles played by AQPs in secretory processes have been investigated in many secretory glands. However, despite considerable research, additional studies are clearly needed to pursue our understanding of the role played by AQPs in secretory processes. This book chapter will focus on summarizing the current knowledge on AQPs expression and function in the gastrointestinal tract , including salivary glands, gastric glands, Duodenal Brunner's gland, liver and gallbladder, intestinal goblets cells, exocrine and endocrine pancreas, as well as few other secretory glands including airway submucosal glands, lacrimal glands, mammary glands and eccrine sweat glands.


Asunto(s)
Acuaporinas/metabolismo , Células Eucariotas/metabolismo , Mucosa Gástrica/metabolismo , Glándulas Mamarias Humanas/metabolismo , Glándulas Salivales/metabolismo , Animales , Acuaporinas/química , Acuaporinas/genética , Transporte Biológico , Glándulas Duodenales/metabolismo , Células Eucariotas/citología , Expresión Génica , Humanos , Islotes Pancreáticos/metabolismo , Aparato Lagrimal/metabolismo , Páncreas Exocrino/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Glándulas Sudoríparas/metabolismo
17.
Neonatology ; 121(3): 283-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246160

RESUMEN

BACKGROUND: Optimising postnatal growth facilitates better long-term neonatal neurodevelopmental outcomes. Early postnatal growth is often hindered by a variety of factors unique to the extrauterine environment and digestive immaturity both contributing to reduced enteral feed tolerance during the first few days and weeks after birth. Preterm infants display varying levels of pancreatic insufficiency that are related to gestational age and providing digestive enzyme supplementation, may be one way in which to improve postnatal growth in enterally fed preterm babies. SUMMARY: In this review, we explore which exocrine pancreatic enzymes are deficient in preterm babies, the methods by which exocrine pancreatic function is measured, potential avenues by which digestive enzyme replacement might improve postnatal growth failure, and which babies might benefit most from this intervention. KEY MESSAGES: Pancreatic exocrine function exhibits developmental immaturity in extremely preterm infants and may contribute to postnatal growth failure. Stool elastase is a simple, non-invasive method of assessing pancreatic function in preterm infants. Available evidence does not currently support routine use of digestive enzyme supplementation in preterm infants.


Asunto(s)
Suplementos Dietéticos , Insuficiencia Pancreática Exocrina , Recien Nacido Prematuro , Humanos , Recién Nacido , Insuficiencia Pancreática Exocrina/tratamiento farmacológico , Recien Nacido Prematuro/crecimiento & desarrollo , Elastasa Pancreática , Nutrición Enteral , Terapia de Reemplazo Enzimático , Edad Gestacional , Desarrollo Infantil
18.
Protoplasma ; 261(2): 213-225, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37658179

RESUMEN

The spermatheca and colleterial glands of female insects are organs associated with the reproductive system, responsible for sperm storage and secretion of egg coverings, respectively. Here we compared the development, secretory activity, and chemical nature of the secretion in the spermatheca and colleterial glands of different-aged females of the drywood termite Cryptotermes brevis. We also provide the ultrastructure of these organs in alate females. These structures have been poorly investigated in termites when compared to other eusocial insects (Hymenoptera) and termite-related dictyopterans (mantises and cockroaches). The spermatheca of C. brevis comprises a cone-shaped structure, connected to the genital chamber by a short duct. The colleterial glands, in turn, are divided into anterior and posterior tubules, each showing a basal trunk, and join into a common duct. Histological and histochemical analyses showed that the secretion of proteins and polysaccharides by the spermatheca takes place before pairing, but increases as females mate and store sperm. Colleterial glands of alates showed non-synchronous secretory activity, but the synthesis of products increased in egg-laying queens, together with the epithelium height. Ultrastructure of the spermatheca and colleterial glands revealed epithelia composed of class III secretory cells. Richness of mitochondria and electron-dense secretion in the spermatheca indicates synthesis and transport of content. Presence and absence of colleterial gland secretion in different individuals may reflect variable maturation stages of the females and secretory cells. Assuming that termites are iteroparous, the development and secretion of the spermatheca and colleterial glands play a crucial role for C. brevis queens.


Asunto(s)
Cucarachas , Isópteros , Humanos , Animales , Masculino , Femenino , Anciano , Oviposición , Semen , Reproducción
19.
Am J Physiol Gastrointest Liver Physiol ; 305(10): G685-96, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24029466

RESUMEN

The mechanism involved in the sorting and accumulation of secretory cargo proteins, such as amylase, into secretory granules of exocrine cells remains to be solved. To clarify that sorting mechanism, we expressed a reporter protein HaloTag fused with partial sequences of salivary amylase protein in primary cultured parotid acinar cells. We found that a HaloTag protein fused with only the signal peptide sequence (Met(1)-Ala(25)) of amylase, termed SS25H, colocalized well with endogenous amylase, which was confirmed by immunofluorescence microscopy. Percoll-density gradient centrifugation of secretory granule fractions shows that the distributions of amylase and SS25H were similar. These results suggest that SS25H is transported to secretory granules and is not discriminated from endogenous amylase by the machinery that functions to remove proteins other than granule cargo from immature granules. Another reporter protein, DsRed2, that has the same signal peptide sequence also colocalized with amylase, suggesting that the sorting to secretory granules is not dependent on a characteristic of the HaloTag protein. Whereas Blue Native PAGE demonstrates that endogenous amylase forms a high-molecular-weight complex, SS25H does not participate in the complex and does not form self-aggregates. Nevertheless, SS25H was released from cells by the addition of a ß-adrenergic agonist, isoproterenol, which also induces amylase secretion. These results indicate that addition of the signal peptide sequence, which is necessary for the translocation in the endoplasmic reticulum, is sufficient for the transportation and storage of cargo proteins in secretory granules of exocrine cells.


Asunto(s)
Células Acinares/fisiología , Páncreas/citología , Glándula Parótida/citología , Señales de Clasificación de Proteína/fisiología , Vesículas Secretoras/metabolismo , Células Acinares/citología , Animales , Células Cultivadas , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica , Masculino , Glándula Parótida/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Coloración y Etiquetado
20.
Neotrop Entomol ; 52(6): 1129-1137, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37906377

RESUMEN

Social insects are characterized by having a wide diversity of exocrine glands, with highlights for ants with about 85 glands spreading throughout the body. The mandibular and intramandibular glands are associated with the production of pheromones. The army ants (Dorylinae) play an important role in the structure of the invertebrate community because they are efficient predators and provide suitable conditions for various animals following their invasions in the food search. Labidus coecus (Latreille) is an underground-ameliorating ant and Labidus praedator (Smith) is a generalist surface predator which can deplete invertebrate biomass by up to 75%. This work investigated the morphology of the mandibular and intramandibular glands of L. praedator and L. coecus workers. The glands were analyzed by light microscopy, histochemistry, and scanning electron microscopy. The mandibular and intramandibular glands of the two species were classified as class III glands. The data on the morphology of the mandibular glands has revealed that they have characteristics in common with other subfamilies. The intramandibular glands of the two species of Labidus have similar morphology and chemical composition, which indicates that the components of these glands can have the same function despite their different habits.


Asunto(s)
Hormigas , Animales , Hormigas/anatomía & histología , Invertebrados , Glándulas Exocrinas/anatomía & histología , Glándulas Exocrinas/química , Microscopía Electrónica de Rastreo , Biomasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA