Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Cell Biol ; 100(6): 445-457, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926236

RESUMEN

Chemotherapy is a commonly utilized treatment strategy for colon cancer, a prevalent malignancy. The study intends to probe the function and mechanism of protocadherin 7 (PCDH7) in colon cancer. Gain or loss of functional assays of PCDH7 was performed. MTT and colony formation assay monitored cell proliferation. Transwell measured migration and invasion. Real-time quantitative polymerase chain reaction and western blot verified the profiles of PCDH7 and the MEK1/2/ERK/c-FOS pathway. Western blot was implemented to confirm the profiles of PP1α, MLC2, and p-MLC2 for evaluating the impact of PCDH7 on homotypic cells in cell (hocic) structures. Further, an in-vivo nude mouse model was engineered to figure out the function and mechanism of PCDH7 in tumor cell growth. As indicated by the data, PCDH7 knockdown boosted the cells' sensitivity to chemotherapy. PCDH7 overexpression facilitated their proliferation and invasion, altered autophagy, induced ferroptosis and hocic, and initiated the profile of the MEK1/2/ERK/c-FOS pathway. MEK1/2/ERK inhibition impaired the inhibitory impact of PCDH7 on colon cancer cells' chemotherapy sensitivity and dampened its pro-cancer function in the cells. In-vivo experiments displayed that PCDH7 overexpression stepped up tumor growth and pulmonary metastasis in colon cancer cells. All in all, the research has discovered that PCDH7 knockdown affects autophagy and induces ferroptosis, hence strengthening colon cancer cells' sensitivity to chemotherapy by repressing the MEK1/2/ERK/c-FOS axis.


Asunto(s)
Autofagia , Neoplasias del Colon , Ferroptosis , Animales , Ratones , Autofagia/efectos de los fármacos , Autofagia/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Protocadherinas/genética
2.
Biochem Cell Biol ; 100(3): 213-222, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35263194

RESUMEN

Breast cancer is the most common malignant tumour in women. Our research on alloimperatorin from Angelica dahurica showed that alloimperatorin inhibited breast cancer cell viability in a concentration- and time-dependent manner; it also showed that apoptosis and ferroptosis inhibitors significantly weakened the antisurvival effect of alloimperatorin. Alloimperatorin clearly induced breast cancer cell apoptosis and increased the activities of caspase-3, caspase-8, caspase-9, and poly (ADP-ribose) polymerase; it also caused significant mitochondrial shrinkage, promoted the accumulation of Fe2+, reactive oxygen species, and malondialdehyde, and significantly reduced mRNA and protein expression levels of SLC7A11 and GPX4, indicating that alloimperatorin induces ferroptosis. In addition, alloimperatorin significantly promoted Kelch-like ECH-associated protein 1 (Keap1) expression; although it did not affect the expression of PGAM5 (mitochondrial serine/threonine protein phosphatase) and apoptosis-inducing factor mitochondria associated 1 (AIFM1), it significantly reduced the phosphorylation level of AIFM1. After downregulating the expression of Keap1, PGAM5, or AIFM1, the inhibitory effect of alloimperatorin on cell viability was significantly weakened, indicating that alloimperatorin regulates the Keap1/PGAM5/AIFM1 pathway to promote oxeiptosis. Alloimperatorin significantly inhibited the invasion of breast cancer cells, while Keap1 siRNA or GPX4 overexpression vectors significantly enhanced cell invasion and effectively reversed the anti-invasive effect of alloimperatorin. Therefore, alloimperatorin induces breast cancer cell apoptosis, ferroptosis, and oxeiptosis, thereby inhibiting cell growth and invasion.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Apoptosis , Neoplasias de la Mama/patología , Femenino , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo
3.
Biochem Cell Biol ; 100(5): 378-386, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35785548

RESUMEN

Decursin possesses the potential to alleviate transforming growth factor (TGF)-ß-induced hepatic stellate cells (HSCs) activation. However, the mechanisms by which decursin alleviates hepatic fibrosis remain not fully understood. Our aim is to explore the function of decursin on regulating HSCs' activation and hepatic fibrosis. The anti-fibrotic effect of decursin was evaluated by Masson and Sirius red staining, and immunohistochemical (IHC) and quantitative real-time PCR (qRT-PCR) analyses for alpha-smooth muscle actin (α-SMA) and collagen type I (Col1α1) expression. Ferroptosis was assessed by measuring iron concentration, glutathione peroxidase 4 (Gpx4), and prostaglandin endoperoxide synthase 2 (Ptgs2) expression, glutathione (GSH) level, lipid peroxidation, and reactive oxygen species (ROS) level. We found that decursin treatment decreased carbon tetrachloride (CCl4)-induced liver fibrosis. The primary HSCs isolated from decursin-treated group showed an increased Fe2+, lipid ROS level, and decreased Gpx4 and GSH levels compared with HSCs from the model group. Moreover, decursin promoted ferroptosis in activated HSCs in vitro, as evidenced by declined Gpx4 and GSH levels, increased Fe2+, ROS, and Ptgs2 levels compared with control. More important, ferroptosis inhibitor destroyed the anti-fibrosis effect of decursin on HSCs. In summary, these data suggest that decursin has potential to treat hepatic fibrosis.


Asunto(s)
Benzopiranos , Butiratos , Ferroptosis , Células Estrelladas Hepáticas , Actinas/metabolismo , Benzopiranos/farmacología , Butiratos/farmacología , Tetracloruro de Carbono/toxicidad , Colágeno Tipo I/metabolismo , Ciclooxigenasa 2/metabolismo , Glutatión/metabolismo , Células Estrelladas Hepáticas/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Crecimiento Transformadores/metabolismo
4.
Rev Port Cardiol ; 41(12): 1037-1046, 2022 12.
Artículo en Inglés, Portugués | MEDLINE | ID: mdl-36228833

RESUMEN

Iron interactions with the cardiovascular system were proposed about half a century ago, yet a clear-cut understanding of this micronutrient and its intricacies with acute and chronic events is still lacking. In chronic heart failure, patients with decreased iron stores appear to benefit from intravenous administration of metallic formulations, whereas acute diseases (e.g., myocardial infarction, stroke) are barely studied in randomized controlled trials in humans. However, proof-of-concept studies have indicated that the dual redox characteristics of iron could be involved in atherosclerosis, necrosis, and ferroptosis. To this end, we sought to review the currently available body of literature pertaining to these temporal profiles of heart diseases, as well as the pathophysiologic mechanism by which iron enacts, underlining key points related to treatment options.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Insuficiencia Cardíaca , Infarto del Miocardio , Humanos , Hierro/metabolismo
5.
Biol Aujourdhui ; 214(1-2): 1-13, 2020.
Artículo en Francés | MEDLINE | ID: mdl-32773025

RESUMEN

Continuous cell death associated with inflammation is a key trigger of disease progression notably in chronic liver diseases such as non-alcoholic steatohepatitis (NASH). Apoptosis has been studied as a potential target for reducing cell death in NASH. However, recent studies suggest that caspase inhibition is inefficient to treat NASH patients and may aggravate the disease by redirecting cells to alternative mechanisms of cell death. Alternative forms of lytic cell death have recently been identified and are known to induce strong inflammatory responses due to cell membrane permeabilization. Therefore, controlling lytic cell death modes offers new opportunities for potential therapeutic intervention in NASH. This review summarizes the underlying molecular mechanisms of apoptosis and lytic cell death modes, including necroptosis, pyroptosis and ferroptosis, and discusses their relevance in NASH.


TITLE: Les mécanismes de mort cellulaire dans la stéatohépatite non alcoolique. ABSTRACT: La mort hépatocellulaire chronique et l'inflammation qui en résulte sont des évènements clés dans la progression de la stéatose hépatique non alcoolique (NAFL) vers la stéatohépatite non alcoolique (NASH). La NASH est un état sévère de la maladie qui est associé au développement de la fibrose et qui peut à terme évoluer vers la cirrhose et le cancer du foie. L'apoptose a initialement été étudiée comme cible potentielle pour réduire la mort des hépatocytes dans la NASH. Cependant, des études récentes suggèrent que l'inhibition des caspases est inefficace pour traiter les patients atteints de NASH et pourrait même aggraver la maladie en redirigeant les hépatocytes vers d'autres voies de mort cellulaire. De nouvelles formes de mort cellulaire dites lytiques ont récemment été identifiées et induisent de fortes réponses inflammatoires causées par la perméabilisation des membranes cellulaires. Le contrôle de ces voies de mort lytiques offre par conséquent de nouvelles opportunités thérapeutiques pour traiter la NASH. Cette revue résume les mécanismes moléculaires déclenchant l'apoptose et les voies de mort lytiques, parmi lesquelles la nécroptose, la pyroptose et la ferroptose, et discute de leur pertinence dans la NASH.


Asunto(s)
Apoptosis/fisiología , Hepatocitos/fisiología , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Muerte Celular/fisiología , Progresión de la Enfermedad , Hepatocitos/patología , Humanos , Inflamación/complicaciones , Inflamación/patología
6.
Acta bioquím. clín. latinoam ; Acta bioquím. clín. latinoam;56(4): 490-513, dic. 2022. graf
Artículo en Español | LILACS-Express | LILACS, BINACIS | ID: biblio-1439101

RESUMEN

Resumen El hierro (Fe) es un elemento vital para casi todos los organismos debido a su facilidad para donar y aceptar electrones. Es cofactor de muchas proteínas y enzimas necesarias para la adecuada utilización del oxígeno y la generación de energía. Su desregulación se relaciona a procesos de estrés oxidativo y muerte celular mediada por Fe(II) denominada ferroptosis. Las células de mamíferos utilizan múltiples mecanismos para garantizar la adquisición del hierro como nutriente esencial, que se encuentra oxidado [Fe(III)], y que debe ser reducido a Fe(II) para su adecuada utilización intracelular. Cada etapa de transferencia del hierro a través de las membranas biológicas exige una reconversión de su estado de oxidado a reducido y viceversa, dependiendo del paso metabólico implicado. La distorsión de dichos procesos se asocia con varias enfermedades: desde la deficiencia de hierro debida a defectos en la adquisición o distribución del metal, que causa anemia, a la sobrecarga de hierro que resulta de una absorción excesiva de hierro o en una utilización defectuosa, que causa una sobreoferta de Fe(II) en los tejidos y que lleva a un daño oxidativo y a la muerte celular. Existen múltiples mecanismos regulatorios que en conjunto aseguran el equilibrio en la homeostasis del hierro. Esta actualización describe los avances recientes en las vías reguladoras del hierro, así como en los mecanismos subyacentes al tráfico de dicho elemento desde su absorción, principalmente biodistribución y su uso intracelular, quizás el área más importante donde se define su adecuada utilización o la muerte celular por ferroptosis.


Abstract Iron (Fe) is a vital element for almost all organisms due to its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for the proper use of oxygen and energy generation, and its deregulation is related to the processes of oxidative stress and iron-mediated cell death called ferroptosis. Mammalian cells use multiple mechanisms to ensure the acquisition of iron as an essential nutrient, which is normally oxidised in the form of Fe(III) and must be reduced to Fe(II) for adequate intracellular use. Each stage of iron transfer across biological membranes requires a reconversion of its state from oxidised to reduced and vice versa, depending on the metabolic step involved. Distortion of these processes is associated with various diseases, such as iron deficiency due to defects in the acquisition or distribution of the metal that causes anemia, as well as iron overload from excessive iron absorption or defective use, which results in an oversupply of Fe(II) in tissues leading to oxidative damage and cell death. There are multiple regulatory mechanisms that together ensure the balance in iron homeostasis. This update describes the recent advances in the iron regulatory pathways, as well as in the mechanisms underlying iron trafficking from its absorption, mainly biodistribution and its intracellular use, perhaps the most important area where its adequate utilisation or cell death by ferroptosis is defined.


Resumo O ferro (Fe) é um elemento vital para quase todos os organismos devido à sua capacidade de doar e aceitar elétrons com relativa facilidade. O ferro serve como cofator para muitas proteínas e enzimas necessárias para o uso adequado do oxigênio e geração de energia, e a sua desregulação está relacionada a processos de estresse oxidativo e morte celular mediada por Fe(II) denominado ferroptose. As células de mamíferos utilizam múltiplos mecanismos para garantir a aquisição de ferro como nutriente essencial, que normalmente é oxidado na forma de Fe(III) e deve ser reduzido a Fe(II) para o uso intracelular adequado. Cada estágio de transferência de Fe através das membranas biológicas requer uma reconversão de seu estado de oxidado para reduzido e vice-versa, dependendo da etapa metabólica envolvida. A distorção desses processos está associada a várias doenças: desde a deficiência de ferro devido a defeitos na aquisição ou distribuição do metal que causa a anemia, até a sobrecarga de ferro resultante da absorção excessiva de ferro ou utilização defeituosa, que causa um excesso de oferta de Fe(II) nos tecidos levando ao dano oxidativo e morte celular. Existem múltiplos mecanismos regulatórios que juntos garantem o equilíbrio na homeostase do ferro. Esta atualização descreve os avanços recentes nas vias reguladoras do ferro, bem como nos mecanismos subjacentes ao tráfico deste elemento desde a sua absorção, principalmente biodistribuição e seu uso intracelular, talvez a área mais importante onde sua utilização adequada ou morte celular por ferroptose é definido.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA