Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105048, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37451481

RESUMEN

Filamentous phages are one of the simplest examples of viruses with a protein capsid that protects a circular single-stranded DNA genome. The infection is very specific, nonlytic, and can strongly affect the physiology or provide new pathogenic factors to its bacterial host. The infection process is proposed to rely on a pore-forming mechanism similar to that of certain nonenveloped eukaryotic viruses. The Ff coliphages (including M13, fd, and f1) have been intensively studied and were used to establish the sequence of events taking place for efficient crossing of the host envelope structure. However, the mechanism involved in the penetration of the cell inner membrane is not well understood. Here, we identify new host players involved in the phage translocation mechanism. Interaction studies by a combination of in vivo biochemical methods demonstrate that the adhesion protein pIII located at the tip of the phage binds to TolQ and TolR, two proteins that form a conserved proton-dependent molecular motor in the inner membrane of the host cell. Moreover, in vivo cysteine cross-linking studies reveal that the interactions between the pIII and TolQ or TolR occur between their transmembrane helix domains and may be responding to the proton motive force status of the cell. These results allow us to propose a model for the late stage of filamentous phage translocation mediated by multiple interactions with each individual component of the host TolQRA complex.


Asunto(s)
Bacteriófago M13 , Proteínas de Escherichia coli , Proteínas de la Membrana , Proteínas Virales , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Protones , Proteínas Virales/metabolismo
2.
Microb Cell Fact ; 22(1): 124, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430278

RESUMEN

BACKGROUND: As simplistic proteinaceous carriers of genetic material, phages offer great potential as targeted vectors for mammalian transgene delivery. The filamentous phage M13 is a single-stranded DNA phage with attractive characteristics for gene delivery, including a theoretically unlimited DNA carrying capacity, amenability to tropism modification via phage display, and a well-characterized genome that is easy to genetically modify. The bacterial backbone in gene transfer plasmids consists of elements only necessary for amplification in prokaryotes, and, as such, are superfluous in the mammalian cell. These problematic elements include antibiotic resistance genes, which can disseminate antibiotic resistance, and CpG motifs, which are inflammatory in animals and can lead to transgene silencing. RESULTS: Here, we examined how M13-based phagemids could be improved for transgene delivery by removing the bacterial backbone. A transgene cassette was flanked by isolated initiation and termination elements from the phage origin of replication. Phage proteins provided in trans by a helper would replicate only the cassette, without any bacterial backbone. The rescue efficiency of "miniphagemids" from these split origins was equal to, if not greater than, isogenic "full phagemids" arising from intact origins. The type of cassette encoded by the miniphagemid as well as the choice of host strain constrained the efficiency of phagemid rescue. CONCLUSIONS: The use of two separated domains of the f1 ori improves upon a single wildtype origin while still resulting in high titres of miniphagemid gene transfer vectors. Highly pure lysates of miniaturized phagemids could be rapidly obtained in a straightforward procedure without additional downstream processing.


Asunto(s)
Antibacterianos , Bacteriófagos , Animales , Transgenes , Bacteriófagos/genética , Técnicas de Visualización de Superficie Celular , Mamíferos
3.
J Biomol NMR ; 72(1-2): 55-67, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30141148

RESUMEN

Determination of chemical shift anisotropy (CSA) in immobilized proteins and protein assemblies is one of several tools to determine protein dynamics on the timescales of microseconds and faster. The large CSA values of C=O groups in the rigid limit makes them in particular attractive for measurements of large amplitude motions, or their absence. In this study, we implement a 3D R-symmetry-based sequence that recouples the second spatial component of the 13C CSA with the corresponding isotropic 13C'-13C cross-peaks in order to probe backbone and sidechain dynamics in an intact fd-y21m filamentous phage viral capsid. The assignment of the isotropic cross-peaks and the analysis were conducted automatically using a new software named 'Raven'. The software can be utilized to auto-assign any 2D 13C-13C or 15N-13C spectrum given a previously-determined assignment table and generates simultaneously all intensity curves acquired in the third dimension. Here, all CSA spectra were automatically generated, and subsequently matched against a simulated set of CSA curves to yield their values. For the multi-copy, 50-residue-long protein capsid of fd-y21m, the backbone of the helical region is rigid, with reduced CSA values of ~ 12.5 kHz (~ 83 ppm). The N-terminus shows motionally-averaged CSA lineshapes and the carboxylic sidechain groups of four residues indicate large amplitude motions for D4, D5, D12 and E20. The current results further strengthen our previous studies of 15N CSA values and are in agreement with qualitative analysis of 13C-13C dipolar build-up curves, which were automatically obtained using our software. Our automated analysis technique is general and can be applied to study protein structure and dynamics, with data resulting from experiments that probe different variables such as relaxation rates and scaled anisotropic interactions.


Asunto(s)
Anisotropía , Bacteriófago M13/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química , Isótopos de Carbono , Simulación de Dinámica Molecular , Movimiento (Física) , Conformación Proteica , Programas Informáticos , Factores de Tiempo
4.
Chemistry ; 24(35): 8737-8741, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29660798

RESUMEN

The capsid dynamics of filamentous bacteriophages is related to their function, stability, and interactions with the genome, and can be assessed by measuring the chemical shift anisotropy (CSA) of 15 N amides, which are sensitive to large amplitude motions. In this study, CSA recoupling experiments under magic-angle spinning NMR were used to probe the dynamics of the y21m capsid mutant of fd bacteriophage. Based on fitting the generated CSA lineshapes, residues located in the N-terminus undergo increased motional amplitudes suggesting its global motion, whereas other backbone residues are rigid, and imply a tight hydrophobic packing of the phage.

5.
Proc Natl Acad Sci U S A ; 112(4): 971-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25587134

RESUMEN

Filamentous phage are elongated semiflexible ssDNA viruses that infect bacteria. The M13 phage, belonging to the family inoviridae, has a length of ∼1 µm and a diameter of ∼7 nm. Here we present a structural model for the capsid of intact M13 bacteriophage using Rosetta model building guided by structure restraints obtained from magic-angle spinning solid-state NMR experimental data. The C5 subunit symmetry observed in fiber diffraction studies was enforced during model building. The structure consists of stacked pentamers with largely alpha helical subunits containing an N-terminal type II ß-turn; there is a rise of 16.6-16.7 Å and a tilt of 36.1-36.6° between consecutive pentamers. The packing of the subunits is stabilized by a repeating hydrophobic stacking pocket; each subunit participates in four pockets by contributing different hydrophobic residues, which are spread along the subunit sequence. Our study provides, to our knowledge, the first magic-angle spinning NMR structure of an intact filamentous virus capsid and further demonstrates the strength of this technique as a method of choice to study noncrystalline, high-molecular-weight molecular assemblies.


Asunto(s)
Bacteriófago M13/química , Cápside/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína
6.
Microbiol Resour Announc ; 13(2): e0118023, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38265206

RESUMEN

We present a new inovirus named Copypasta isolated from the Rhine River that infects Escherichia coli and shows the expected filamentous morphology. Copypasta has a circular single-stranded DNA genome that is 6,408 nt long and harbors 12 protein-coding genes.

7.
Biotechnol J ; 19(3): e2300688, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38479991

RESUMEN

Filamentous bacteriophage display technology has been employed in antibody discovery, drug screening, and protein-protein interaction study across various fields, including food safety, agricultural pollution, and environmental monitoring. Antifilamentous bacteriophage antibodies for identifying filamentous bacteriophage are playing a pivotal role in this technology. However, the existing antifilamentous bacteriophage antibodies lack sensitivity and specificity, and the antibodies preparation methods are cumbersome and hyposensitive. The major coat protein pVIII of filamentous bacteriophage has an advantage in quantification, which is benefit for detecting signal amplification but its full potential remains underutilized. In this study, the partial polypeptide CT21 of the major coat protein pVIII of filamentous bacteriophage was intercepted as the targeted immunogen or coating antigen to prepare antifilamentous bacteriophage antibodies. Six filamentous bacteriophage-specific monoclonal antibodies (mAbs) M5G8, M9A2, P6B5, P6D2, P8E4, and P10D4 were obtained. The limit of detections of the prepared six mAbs for detecting filamentous bacteriophage was 1.0 × 107  pfu mL-1 . These mAbs stayed stable under different pH, temperature, and exhibited high specificity in real application. This study not only provides a new idea for simplifying the preparation of antifilamentous bacteriophage antibodies which could apply in filamentous bacteriophage display, but it also presents a novel strategy for preparing antibodies against protein-specific epitopes with high sensitivity.


Asunto(s)
Inovirus , Inovirus/genética , Inovirus/metabolismo , Anticuerpos Monoclonales/metabolismo , Cápside , Péptidos/metabolismo , Epítopos
8.
Biosens Bioelectron ; 237: 115518, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442029

RESUMEN

Viruses have unique coat proteins that are genetically modifiable. Their surface can serve as a nano-template on which electroactive molecules are immobilized. In this study, we report filamentous bacteriophage as a backbone to which redox mediators are covalently and densely tethered, constructing redox nanowire, i.e. an electron conducting biomaterial. The highly ordered coat proteins of a filamentous bacteriophage provide flexible and biocompatible platform to constitute a biohybrid redox nanowire. Incorporating bacteriophage and redox molecules form an entangled assembly of nanowires enabling facile electron transfer. Electron transfer among the molecular mediators in the entangled assembly originates apparent electron diffusion of which the electron transfer rate is comparable to that observed in conventional redox polymers. Programming peptide terminals suggests further enhancement in electron mediation by increasing redox species mobility. In addition, the redox nanowire film functions as a favorable matrix for enzyme encapsulation. The stability of the enzymes entrapped in this unique matrix is substantially improved.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Nanocables , Nanocables/química , Oxidación-Reducción , Transporte de Electrón , Electrodos
9.
Viruses ; 15(3)2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36992381

RESUMEN

Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in vivo anti-tumor responses. To enhance the efficacy of the bacteriophage as an anti-tumor vaccine, we designed and generated phage particles expressing a CD8+ peptide derived from the human cancer germline antigen NY-ESO-1 decorated with the immunologically active lipid alpha-GalactosylCeramide (α-GalCer), a potent activator of invariant natural killer T (iNKT) cells. The immune response to phage expressing the human TAA NY-ESO-1 and delivering α-GalCer, namely fdNY-ESO-1/α-GalCer, was analyzed either in vitro or in vivo, using an HLA-A2 transgenic mouse model (HHK). By using NY-ESO-1-specific TCR-engineered T cells and iNKT hybridoma cells, we observed the efficacy of the fdNY-ESO-1/α-GalCer co-delivery strategy at inducing activation of both the cell subsets. Moreover, in vivo administration of fdNY-ESO-1 decorated with α-GalCer lipid in the absence of adjuvants strongly enhances the expansion of NY-ESO-1-specific CD8+ T cells in HHK mice. In conclusion, the filamentous bacteriophage delivering TAA-derived peptides and the α-GalCer lipid may represent a novel and promising anti-tumor vaccination strategy.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Humanos , Ratones , Animales , Proteínas de la Membrana/metabolismo , Linfocitos T CD8-positivos , Galactosilceramidas/metabolismo , Antígenos de Neoplasias , Péptidos , Ratones Transgénicos , Anticuerpos/metabolismo
10.
mBio ; 13(1): e0244121, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35038902

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that causes infections in a variety of settings. Many P. aeruginosa isolates are infected by filamentous Pf bacteriophage integrated into the bacterial chromosome as a prophage. Pf virions can be produced without lysing P. aeruginosa. However, cell lysis can occur during superinfection, which occurs when Pf virions successfully infect a host lysogenized by a Pf prophage. Temperate phages typically encode superinfection exclusion mechanisms to prevent host lysis by virions of the same or similar species. In this study, we sought to elucidate the superinfection exclusion mechanism of Pf phage. Initially, we observed that P. aeruginosa that survive Pf superinfection are transiently resistant to Pf-induced plaquing and are deficient in twitching motility, which is mediated by type IV pili (T4P). Pf utilize T4P as a cell surface receptor, suggesting that T4P are suppressed in bacteria that survive superinfection. We tested the hypothesis that a Pf-encoded protein suppresses T4P to mediate superinfection exclusion by expressing Pf proteins in P. aeruginosa and measuring plaquing and twitching motility. We found that the Pf protein PA0721, which we termed Pf superinfection exclusion (PfsE), promoted resistance to Pf infection and suppressed twitching motility by binding the T4P protein PilC. Because T4P play key roles in biofilm formation and virulence, the ability of Pf phage to modulate T4P via PfsE has implications in the ability of P. aeruginosa to persist at sites of infection. IMPORTANCE Pf bacteriophage (phage) are filamentous viruses that infect Pseudomonas aeruginosa and enhance its virulence potential. Pf virions can lyse and kill P. aeruginosa through superinfection, which occurs when an already infected cell is infected by the same or similar phage. Here, we show that a small, highly conserved Pf phage protein (PA0721, PfsE) provides resistance to superinfection by phages that use the type IV pilus as a cell surface receptor. PfsE does this by inhibiting assembly of the type IV pilus via an interaction with PilC. As the type IV pilus plays important roles in virulence, the ability of Pf phage to modulate its assembly has implications for P. aeruginosa pathogenesis.


Asunto(s)
Inovirus , Sobreinfección , Humanos , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/metabolismo , Inovirus/metabolismo , Fimbrias Bacterianas/genética
11.
Front Immunol ; 12: 729336, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566987

RESUMEN

Glioma is a life-threatening malignant tumor. Resistance to traditional treatments and tumor recurrence present major challenges in treating and managing this disease, consequently, new therapeutic strategies must be developed. Crossing the blood-brain barrier (BBB) is another challenge for most drug vectors and therapy medications. Filamentous bacteriophage can enter the brain across the BBB. Compared to traditional drug vectors, phage-based drugs offer thermodynamic stability, biocompatibility, homogeneity, high carrying capacity, self-assembly, scalability, and low toxicity. Tumor-targeting peptides from phage library and phages displaying targeting peptides are ideal drug delivery agents. This review summarized recent studies on phage-based glioma therapy and shed light on the developing therapeutics phage in the personalized treatment of glioma.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias Encefálicas/terapia , Portadores de Fármacos , Técnicas de Transferencia de Gen , Terapia Genética , Glioma/terapia , Inovirus/metabolismo , Péptidos/metabolismo , Animales , Antineoplásicos/efectos adversos , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Vectores Genéticos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Humanos , Inovirus/genética , Péptidos/genética , Permeabilidad , Medicina de Precisión
12.
J Colloid Interface Sci ; 583: 267-278, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002698

RESUMEN

Owing to the emerging resistance to current anti-influenza therapies, strategies for blocking virus-cell interaction with agents that mimic interactions with host cell receptors are garnering interest. In this context, a multivalent presentation of sialyl groups on various types of scaffold materials such as dendrimers, liposomes, nanoparticles, and natural/synthetic polymers has been investigated for the inhibition of influenza A virus infection. However, the development of versatile antiviral agents based on monodisperse scaffolds capable of precise molecular design remains challenging. Whether an anisotropically extended filamentous nanostructure can serve as an effective scaffold for maximum inhibition of viral cell attachment has not been investigated. In this study, the preparation of a series of sialyllactose-conjugated filamentous bacteriophages (SLPhages), with controlled loading levels, ligand valencies, and two types of sialyllactose (α2,3' and α2,6'), is demonstrated. With optimal ligand loading and valency, SLPhages showed inhibitory activity (in vitro) against influenza A viruses at concentrations of tens of picomolar. This remarkable inhibition is due to the strong interaction between the SLPhage and the virus; this interaction is adequately potent to compensate for the cost of the bending and wrapping of the SLPhage around the influenza virus. Our study may open new avenues for the development of filamentous anti-viral agents, in which virus-wrapping or aggregation is the primary feature responsible for the blocking of cell entry.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Nanopartículas , Antivirales/farmacología , Humanos , Gripe Humana/tratamiento farmacológico
13.
Structure ; 28(12): 1321-1328.e2, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32916103

RESUMEN

Conjugative pili are important in mediating bacterial conjugation and horizontal gene transfer. Since plasmid transfer can include antibiotic-resistance genes, conjugation is an important mechanism in the spread of antibiotic resistance. Filamentous bacteriophages have been shown to exist in two different structural classes: those with a 5-fold rotational symmetry and those with a one-start helix with approximately 5 subunits per turn. Structures for the F and the F-like pED208 conjugation pilus have shown that they have 5-fold rotational symmetry. Here, we report the cryoelectron-microscopic structure of conjugative pili from carbapenem-resistant Klebsiella pneumoniae, encoded on the IncFIIK pKpQIL plasmid, at 3.9 Å resolution and show that it has a one-start helix. These results establish that conjugation pili can exist in at least two structural classes, consistent with other results showing that relatively small perturbations are needed to change the helical symmetry of polymers.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos/química , Klebsiella pneumoniae/química , Pili Sexual/química , Microscopía por Crioelectrón , Dominios Proteicos
14.
Pharmaceutics ; 11(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480551

RESUMEN

The pharmaceutical use of bacteriophages as safe and inexpensive therapeutic tools is collecting renewed interest. The use of lytic phages to fight antibiotic-resistant bacterial strains is pursued in academic and industrial projects and is the object of several clinical trials. On the other hand, filamentous bacteriophages used for the phage display technology can also have diagnostic and therapeutic applications. Filamentous bacteriophages are nature-made nanoparticles useful for their size, the capability to enter blood vessels, and the capacity of high-density antigen expression. In the last decades, our laboratory focused its efforts in the study of antigen delivery strategies based on the filamentous bacteriophage 'fd', able to trigger all arms of the immune response, with particular emphasis on the ability of the MHC class I restricted antigenic determinants displayed on phages to induce strong and protective cytotoxic responses. We showed that fd bacteriophages, engineered to target mouse dendritic cells (DCs), activate innate and adaptive responses without the need of exogenous adjuvants, and more recently, we described the display of immunologically active lipids. In this review, we will provide an overview of the reported applications of the bacteriophage carriers and describe the advantages of exploiting this technology for delivery strategies.

15.
Biosens Bioelectron ; 102: 121-128, 2018 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-29128714

RESUMEN

Bead-based multiplex immunoassays for common use require enhanced sensitivity and effective prevention of non-specific adsorption, as well as miniaturization of the detection device. In this work, we have implemented virus-tethered gold microspheres for multiplex immunoassay applications, employing a DC impedance-based flow cytometer as a detection element. The advantages of virus-tethered gold microspheres, including excellent prevention of non-specific adsorption, are extended to signal enhancement arising from the large quantity of antibody loading on each virion, and to flexible movement of filamentous virus. Individual virus-tethered beads generate their own DC impedance and fluorescence signals, which are simultaneously detected by a chip-based microfluidic flow cytometer. This system successfully realized multiplex immunoassays involving four biomarkers: cardiac troponin I (cTnI), prostate specific antigen (PSA), creatine kinase MB (CK-MB), and myoglobin in undiluted human sera, elevating sensitivity by up to 5.7-fold compared to the beads without virus. Constructive integration between filamentous virus-tethered Au-layered microspheres and use of a microfluidic cytometer suggests a promising strategy for competitive multiplex immunoassay development based on suspension arrays.


Asunto(s)
Anticuerpos Inmovilizados/química , Bacteriófagos/química , Forma MB de la Creatina-Quinasa/sangre , Citometría de Flujo/instrumentación , Inmunoensayo/instrumentación , Antígeno Prostático Específico/sangre , Troponina I/sangre , Biomarcadores/sangre , Técnicas Biosensibles/instrumentación , Impedancia Eléctrica , Oro/química , Humanos , Dispositivos Laboratorio en un Chip , Microesferas
16.
Front Immunol ; 9: 1496, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30002659

RESUMEN

We have exploited the properties of filamentous bacteriophage fd to deliver immunologically active lipids together with antigenic peptides. Filamentous bacteriophages resemble for size, capability to be permeable to blood vessels, and high density antigen expression, a nature-made nanoparticle. In addition, their major coat protein pVIII, which is arranged to form a tubular shield surrounding the phage genome, has a high content of hydrophobic residues promoting lipid association. We conjugated bacteriophages to alpha-GalactosylCeramide (α-GalCer), a lipid antigen-stimulating invariant natural killer T (iNKT) cells and capable of inducing their anti-tumoral activities. We found that bacteriophage fd/α-GalCer conjugates could repeatedly stimulate iNKT cells in vitro and in vivo, without inducing iNKT anergy. Moreover, co-delivery of α-GalCer and a MHC class I restricted tumor-associated antigenic determinant to antigen-presenting cells via bacteriophages strongly boosted adaptive CD8+ T cell response and efficiently delayed tumor progression. Co-delivery of a tumor antigen and iNKT-stimulatory lipid on the surface of filamentous bacteriophages is a novel approach to potentiate adaptive anti-cancer immune responses, overcoming the current limitations in the use of free α-GalCer and may represent an attractive alternative to existing delivery methods, opening the path to a potential translational usage of this safe, inexpensive, and versatile tool.

17.
Polymers (Basel) ; 10(9)2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30960899

RESUMEN

Molecularly imprinted polymers (MIPs) have proven to be particularly effective chemical probes for the molecular recognition of proteins, DNA, and viruses. Here, we started from a filamentous bacteriophage to synthesize a multi-functionalized MIP for detecting the acidic pharmaceutic clofibric acid (CA) as a chemical pollutant. Adsorption and quartz crystal microbalance with dissipation monitoring experiments showed that the phage-functionalized MIP had a good binding affinity for CA, compared with the non-imprinted polymer and MIP. In addition, the reusability of the phage-functionalized MIP was demonstrated for at least five repeated cycles, without significant loss in the binding activity. The results indicate that the exposed amino acids of the phage, together with the polymer matrix, create functional binding cavities that provide higher affinity to acidic pharmaceutical compounds.

18.
Prog Biophys Mol Biol ; 127: 43-87, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28442432

RESUMEN

Two fundamental structures in molecular biology, DNA and the α-helix, were determined using X-ray fibre diffraction data, and yet fibre diffraction occupies an obscure niche in structural biology. Relatively few structures are appropriate for the technique, and it seldom supplies data of the quality common in protein crystallography; however, it has proven indispensable in some cases. Here we outline some aspects of helix diffraction mathematics, and then illustrate the application of fibre diffraction by three case studies: DNA, filamentous bacterial viruses, and bacterial pili. These examples are illustrative, not exhaustive, and reviews of other important structures such as plant viruses, polysaccharides and amyloids are also cited, as appropriate. Finally we describe in more detail the methods currently used to obtain and analyze fibre diffraction patterns of biological macromolecules, to give a technique-oriented tutorial which may be useful to researchers who find that they require fibre diffraction for their work.


Asunto(s)
Difracción de Rayos X/métodos , Animales , Bacteriófagos/química , ADN/química , Fimbrias Bacterianas/química , Difracción de Neutrones
19.
Methods Mol Biol ; 1404: 483-495, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27076317

RESUMEN

Viruslike particles often combine high physical stability with robust immunogenicity. Furthermore, when such particles are based on bacteriophages, they can be produced in high amounts at minimal cost and typically will require only standard biologically contained facilities. We provide protocols for the characterization and purification of recombinant viruslike particles derived from filamentous bacteriophages. As an example, we focus on filamentous Escherichia coli fd phage displaying a conserved influenza A virus epitope that is fused genetically to the N-terminus of the major coat protein of this phage. A step-by-step procedure to obtain a high-titer, pure recombinant phage preparation is provided. We also describe a quality control experiment based on a biological readout of the purified fd phage preparation. These protocols together with the highlighted critical steps may facilitate generic implementation of the provided procedures for the display of other epitopes by recombinant fd phages.


Asunto(s)
Bacteriófago M13/genética , ADN Recombinante/genética , Epítopos/genética , Ingeniería Genética/métodos , Vacunas de Partículas Similares a Virus/genética , Bacteriófago M13/efectos de los fármacos , Farmacorresistencia Viral , Electroforesis en Gel de Poliacrilamida , Epítopos/inmunología , Epítopos/aislamiento & purificación , Immunoblotting , Coloración y Etiquetado , Tetraciclina/farmacología , Transformación Genética , Ultracentrifugación , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/aislamiento & purificación
20.
EMBO Mol Med ; 7(7): 973-88, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-25888235

RESUMEN

Filamentous bacteriophage fd particles delivering antigenic determinants via DEC-205 (fdsc-αDEC) represent a powerful delivery system that induces CD8(+) T-cell responses even when administered in the absence of adjuvants or maturation stimuli for dendritic cells. In order to investigate the mechanisms of this activity, RNA-Sequencing of fd-pulsed dendritic cells was performed. A significant differential expression of genes involved in innate immunity, co-stimulation and cytokine production was observed. In agreement with these findings, we demonstrate that induction of proinflammatory cytokines and type I interferon by fdsc-αDEC was MYD88 mediated and TLR9 dependent. We also found that fdsc-αDEC is delivered into LAMP-1-positive compartments and co-localizes with TLR9. Thus, phage particles containing a single-strand DNA genome rich in CpG motifs delivered via DEC-205 are able to intercept and trigger the active TLR9 innate immune receptor into late endosome/lysosomes and to enhance the immunogenicity of the displayed antigenic determinants. These findings make fd bacteriophage a valuable tool for immunization without administering exogenous adjuvants.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Antígenos CD/metabolismo , Antígenos/inmunología , Células Dendríticas/inmunología , Inovirus/genética , Lectinas Tipo C/metabolismo , Receptores de Superficie Celular/metabolismo , Anticuerpos de Cadena Única/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Antígenos/metabolismo , Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Técnicas de Visualización de Superficie Celular , Células Cultivadas , Portadores de Fármacos , Perfilación de la Expresión Génica , Inmunidad Innata , Lectinas Tipo C/inmunología , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Menor , Receptores de Superficie Celular/inmunología , Anticuerpos de Cadena Única/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA