Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(15): e2321255121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564632

RESUMEN

Omega-3 polyunsaturated fatty acids (PUFA) found primarily in fish oil have been a popular supplement for cardiovascular health because they can substantially reduce circulating triglyceride levels in the bloodstream to prevent atherosclerosis. Beyond this established extracellular activity, here, we report a mode of action of PUFA, regulating intracellular triglyceride metabolism and lipid droplet (LD) dynamics. Real-time imaging of the subtle and highly dynamic changes of intracellular lipid metabolism was enabled by a fluorescence lifetime probe that addressed the limitations of intensity-based fluorescence quantifications. Surprisingly, we found that among omega-3 PUFA, only docosahexaenoic acid (DHA) promoted the lipolysis in LDs and reduced the overall fat content by approximately 50%, and consequently helped suppress macrophage differentiation into foam cells, one of the early steps responsible for atherosclerosis. Eicosapentaenoic acid, another omega-3 FA in fish oil, however, counteracted the beneficial effects of DHA on lipolysis promotion and cell foaming prevention. These in vitro findings warrant future validation in vivo.


Asunto(s)
Aterosclerosis , Ácidos Grasos Omega-3 , Humanos , Lipólisis , Fluorescencia , Ácidos Grasos Omega-3/metabolismo , Aceites de Pescado/farmacología , Ácidos Docosahexaenoicos/metabolismo , Macrófagos/metabolismo , Triglicéridos
2.
J Lipid Res ; 65(2): 100496, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185217

RESUMEN

Pulmonary alveolar proteinosis (PAP) is a life-threatening, rare lung syndrome for which there is no cure and no approved therapies. PAP is a disease of lipid accumulation characterized by alveolar macrophage foam cell formation. While much is known about the clinical presentation, there is a paucity of information regarding temporal changes in lipids throughout the course of disease. Our objectives were to define the detailed lipid composition of alveolar macrophages in PAP patients at the time of diagnosis and during treatment. We performed comprehensive mass spectrometry to profile the lipid signature of alveolar macrophages obtained from three independent mouse models of PAP and from PAP and non-PAP patients. Additionally, we quantified changes in macrophage-associated lipids during clinical treatment of PAP patients. We found remarkable variations in lipid composition in PAP patients, which were consistent with data from three independent mouse models. Detailed lipidomic analysis revealed that the overall alveolar macrophage lipid burden inversely correlated with clinical improvement and response to therapy in PAP patients. Specifically, as PAP patients experienced clinical improvement, there was a notable decrease in the total lipid content of alveolar macrophages. This crucial observation suggests that the levels of these macrophage-associated lipids can be utilized to assess the efficacy of treatment. These findings provide valuable insights into the dysregulated lipid metabolism associated with PAP, offering the potential for lipid profiling to serve as a means of monitoring therapeutic interventions in PAP patients.


Asunto(s)
Proteinosis Alveolar Pulmonar , Animales , Ratones , Humanos , Proteinosis Alveolar Pulmonar/tratamiento farmacológico , Proteinosis Alveolar Pulmonar/diagnóstico , Proteinosis Alveolar Pulmonar/metabolismo , Macrófagos Alveolares , Pulmón/metabolismo , Macrófagos/metabolismo , Lípidos
3.
J Cell Mol Med ; 28(7): e18177, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494843

RESUMEN

Atherosclerosis, a chronic inflammatory disease of aorta, remains the major cause of morbidity and mortality among cardiovascular disease patients. Macrophage foam cell formation and inflammation are critically involved in early stages of atherosclerosis, hence chemopreventive targeting of foam cell formation by nutraceuticals may be a promising approach to curbing the progression of atherosclerosis. However, many nutraceuticals including berberine and ginkgetin have low stability, tissue/cell penetration and bioavailability resulting in inadequate chemotherapeutic effects of these nutraceuticals. We have used avocado-derived extracellular vesicles (EV) isolated from avocado (EVAvo ) as a novel carrier of nutraceuticals, in a strategy to alleviate the build-up of macrophage foam cells and expression of inflammatory genes. Our key findings are: (i) Avocado is a natural source of plant-derived EVs as shown by the results from transmission electron microscopy, dynamic light scattering and NanoBrook Omni analysis and atomic force microscopy; (ii) EVAvo are taken up by macrophages, a critical cell type in atherosclerosis; (iii) EVAvo can be loaded with high amounts of ginkgetin and berberine; (iv) ginkgetin plus berberine-loaded EVAvo (EVAvo(B+G) ) suppress activation of NFκB and NLRP3, and inhibit expression of pro-inflammatory and atherogenic genes, specifically Cd36, Tnfα, Il1ß and Il6; (v) EVAvo(B+G) attenuate oxidized low-density lipoprotein (oxLDL)-induced macrophage foam cell formation and (vi) EVAvo(B+G) inhibit oxLDL uptake but not its cell surface binding during foam cell formation. Overall, our results suggest that using EVAvo as a natural carrier of nutraceuticals may improve strategies to curb the progression of atherosclerosis by limiting inflammation and pro-atherogenic responses.


Asunto(s)
Aterosclerosis , Berberina , Biflavonoides , Persea , Humanos , Células Espumosas , Berberina/farmacología , Macrófagos , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/prevención & control , Lipoproteínas LDL
4.
Mol Med ; 30(1): 38, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493291

RESUMEN

BACKGROUND: Macrophage-derived extracellular vesicle (macrophage-EV) is highly studied for its regulatory role in atherosclerosis (AS). Our current study tried to elucidate the possible role of macrophage-EV loaded with small interfering RNA against high-mobility group box 1 (siHMGB1) affecting atherosclerotic plaque formation. METHODS: In silico analysis was performed to find critical factors in mouse atherosclerotic plaque formation. EVs secreted by RAW 264.7 cells were collected by ultracentrifugation and characterized, followed by the preparation of macrophage-EV-loaded siHMGB1 (macrophage-EV/siHMGB1). ApoE-/- mice were used to construct an AS mouse model by a high-fat diet, followed by injection of macrophage-EV/siHMGB1 to assess the in vivo effect of macrophage-EV/siHMGB1 on AS mice. RAW264.7 cells were subjected to ox-LDL, LPS or macrophage-EV/siHMGB1 for analyzing the in vitro effect of macrophage-EV/siHMGB1 on macrophage pyrophosis and inflammation. RESULTS: In silico analysis found that HMGB1 was closely related to the development of AS. Macrophage-EV/siHMGB could inhibit the release of HMGB1 from macrophages to outside cells, and the reduced HMGB1 release could inhibit foam cell formation. Besides, macrophage-EV/siHMGB also inhibited the LPS-induced Caspase-11 activation, thus inhibiting macrophage pyroptosis and preventing atherosclerotic plaque formation. CONCLUSION: Our results proved that macrophage-EV/siHMGB could inhibit foam cell formation and suppress macrophage pyroptosis, finally preventing atherosclerotic plaque formation in AS mice.


Asunto(s)
Aterosclerosis , Vesículas Extracelulares , Proteína HMGB1 , Placa Aterosclerótica , Animales , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Caspasas , Regulación hacia Abajo , Proteína HMGB1/genética , Lipopolisacáridos/farmacología , Macrófagos , Piroptosis
5.
Biochem Biophys Res Commun ; 708: 149788, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38518720

RESUMEN

Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.


Asunto(s)
Acetofenonas , Aterosclerosis , Ferroptosis , Animales , Ratones , Células Espumosas , Factor 2 Relacionado con NF-E2 , Sirtuina 1 , Macrófagos , Aterosclerosis/tratamiento farmacológico , Transducción de Señal
6.
FASEB J ; 37(4): e22846, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36856983

RESUMEN

Colchicine is a broad-acting anti-inflammatory agent that has attracted interest for repurposing in atherosclerotic cardiovascular disease. Here, we studied its ability at a human equivalent dose of 0.5 mg/day to modify plaque formation and composition in murine atherosclerosis and investigated its actions on macrophage responses to atherogenic stimuli in vitro. In atherosclerosis induced by high-cholesterol diet, Apoe-/- mice treated with colchicine had 50% reduction in aortic oil Red O+ plaque area compared to saline control (p = .001) and lower oil Red O+ staining of aortic sinus lesions (p = .03). In vitro, addition of 10 nM colchicine inhibited foam cell formation from murine and human macrophages after treatment with oxidized LDL (ox-LDL). Mechanistically, colchicine downregulated glycosylation and surface expression of the ox-LDL uptake receptor, CD36, and reduced CD36+ staining in aortic sinus plaques. It also decreased macrophage uptake of cholesterol crystals, resulting in lower intracellular lysosomal activity, inhibition of the NLRP3 inflammasome, and reduced secretion of IL-1ß and IL-18. Colchicine's anti-atherosclerotic actions were accentuated in a mouse model of unstable plaque induced by carotid artery tandem stenosis surgery, where it decreased lesion size by 48% (p = .01), reduced lipid (p = .006) and necrotic core area (p = .007), increased collagen content and cap-to-necrotic core ratio (p = .05), and attenuated plaque neutrophil extracellular traps (p < .001). At low dose, colchicine's effects were not accompanied by the evidence of microtubule depolymerization. Together, these results show that colchicine exerts anti-atherosclerotic and plaque-stabilizing effects at low dose by inhibiting foam cell formation and cholesterol crystal-induced inflammation. This provides a new framework to support its repurposing for atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Estenosis Carotídea , Humanos , Animales , Ratones , Células Espumosas , Colchicina , Colesterol
7.
Circ Res ; 130(6): 831-847, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35137605

RESUMEN

RATIONALE: Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions. OBJECTIVE: We performed a comparative analysis of autophagy flux in lipid-rich aortic intimal populations to determine whether VSMC-derived foam cells metabolize LDs similarly to their macrophage counterparts. METHODS AND RESULTS: Atherosclerosis was induced in GFP-LC3 (microtubule-associated proteins 1A/1B light chain 3) transgenic mice by PCSK9 (proprotein convertase subtilisin/kexin type 9)-adeno-associated viral injection and Western diet feeding. Using flow cytometry of aortic digests, we observed a significant increase in dysfunctional autophagy of VSMC-derived foam cells during atherogenesis relative to macrophage-derived foam cells. Using cell culture models of lipid-loaded VSMCs and macrophages, we show that autophagy-mediated cholesterol efflux from VSMC foam cells was poor relative to macrophage foam cells, and largely occurs when HDL (high-density lipoprotein) was used as a cholesterol acceptor, as opposed to apoA-1 (apolipoproteinA-1). This was associated with the predominant expression of ABCG1 in VSMC foam cells. Using metformin, an autophagy activator, cholesterol efflux to HDL was significantly increased in VSMC, but not in macrophage, foam cells. CONCLUSIONS: These data demonstrate that VSMC and macrophage foam cells perform cholesterol efflux by distinct mechanisms, and that autophagy flux is highly impaired in VSMC foam cells, but can be induced by pharmacological means. Further investigation is warranted into targeting autophagy specifically in VSMC foam cells, the predominant foam cell subtype of advanced atherosclerotic plaques, to promote reverse cholesterol transport and resolution of the atherosclerotic plaque.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/metabolismo , Autofagia , Colesterol/metabolismo , Células Espumosas/metabolismo , Leucocitos/metabolismo , Ratones , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/patología , Proproteína Convertasa 9/metabolismo
8.
Cell Mol Life Sci ; 80(12): 358, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37950772

RESUMEN

Atherosclerosis (AS) is a serious cardiovascular disease. One of its hallmarks is hyperlipidemia. Inhibiting the formation of macrophage foam cells is critical for alleviating AS. Transcription factor EB (TFEB) can limit the formation of macrophage foam cells by upregulating lysosomal activity. We examined whether TFEB SUMOylation is involved in this progress during AS. In this study, we investigated the role of TFEB SUMOylation in macrophages in AS using TFEB SUMOylation deficiency Ldlr-/- (TFEB-KR: Ldlr-/-) transgenic mice and TFEB-KR bone marrow-derived macrophages. We observed that TFEB-KR: Ldlr-/- atherosclerotic mice had thinner plaques and macrophages with higher lysosomal activity when compared to WT: Ldlr-/- mice. TFEB SUMOylation in macrophages decreased after oxidized low-density lipoprotein (OxLDL) treatment in vitro. Compared with wild type macrophages, TFEB-KR macrophages exhibited less lipid deposition after OxLDL treatment. Our study demonstrated that in AS, deSUMOylation of TFEB could inhibit the formation of macrophage foam cells through enhancing lysosomal biogenesis and autophagy, further reducing the accumulation of lipids in macrophages, and ultimately alleviating the development of AS. Thus, TFEB SUMOylation can be a switch to modulate macrophage foam cells formation and used as a potential target for AS therapy.


Asunto(s)
Aterosclerosis , Células Espumosas , Animales , Ratones , Aterosclerosis/genética , Aterosclerosis/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Ratones Transgénicos , Sumoilación
9.
Clin Exp Pharmacol Physiol ; 51(4): e13845, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38382550

RESUMEN

Abnormalities in vascular smooth muscle cells (VSMCs) are pivotal in the pathogenesis of cardiovascular pathologies such as atherosclerosis and hypertension. Scutellarin (Scu), a flavonoid derived from marigold flowers, exhibits a spectrum of biological activities including anti-inflammatory, antioxidant, antitumor, immunomodulatory and antimicrobial effects. Notably, Scu has demonstrated the capacity to mitigate vascular endothelial damage and prevent atherosclerosis via its antioxidative properties. Nevertheless, the influence of Scu on the formation of VSMC-derived foam cells remains underexplored. In this study, Scu was evidenced to efficaciously attenuate oleic acid (OA)-induced lipid accumulation and the upregulation of adipose differentiation-associated protein Plin2 in a dose- and time-responsive manner. We elucidated that Scu effectively diminishes OA-provoked VSMC foam cell formation. Further, it was established that Scu pretreatment augments the protein expression of LC3B-II and the mRNA levels of Map1lc3b and Becn1, concurrently diminishing the protein levels of the NLRP3 inflammasome compared to the OA group. Activation of autophagy through rapamycin attenuated NLRP3 inflammasome protein expression, intracellular lipid droplet content and Plin2 mRNA levels. Scu also counteracted the OA-induced decrement of LC3B-II levels in the presence of bafilomycin-a1, facilitating the genesis of autophagosomes and autolysosomes. Complementarily, in vivo experiments revealed that Scu administration substantially reduced arterial wall thickness, vessel wall cross-sectional area, wall-to-lumen ratio and serum total cholesterol levels in comparison to the high-fat diet model group. Collectively, our findings suggest that Scu attenuates OA-induced VSMC foam cell formation through the induction of autophagy and the suppression of NLRP3 inflammasome activation.


Asunto(s)
Apigenina , Aterosclerosis , Glucuronatos , Inflamasomas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Células Espumosas/metabolismo , Células Espumosas/patología , Músculo Liso Vascular/metabolismo , Ácido Oléico/farmacología , Ácido Oléico/metabolismo , Aterosclerosis/metabolismo , Autofagia , ARN Mensajero/metabolismo , Miocitos del Músculo Liso/metabolismo
10.
Ecotoxicol Environ Saf ; 272: 116084, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350217

RESUMEN

Polyhexamethylene guanidine (PHMG) is manufactured and applied extensively due to its superior disinfectant capabilities. However, the inhalatory exposure to PHMG aerosols is increasingly recognized as a potential instigator of pulmonary fibrosis, prompting an urgent call for elucidation of the underlying pathophysiological mechanisms. Within this context, alveolar macrophages play a pivotal role in the primary immune defense in the respiratory tract. Dysregulated lipid metabolism within alveolar macrophages leads to the accumulation of foam cells, a process that is intimately linked with the pathogenesis of pulmonary fibrosis. Therefore, this study examines PHMG's effects on alveolar macrophage foaminess and its underlying mechanisms. We conducted a 3-week inhalation exposure followed by a 3-week recovery period in C57BL/6 J mice using a whole-body exposure system equipped with a disinfection aerosol generator (WESDAG). The presence of lipid-laden alveolar macrophages and downregulation of pulmonary tissue lipid transport proteins ABCA1 and ABCG1 were observed in mice. In cell culture models involving lipid-loaded macrophages, we demonstrated that PHMG promotes foam cell formation by inhibiting lipid efflux in mouse alveolar macrophages. Furthermore, PHMG-induced foam cells were found to promote an increase in the release of TGF-ß1, fibronectin deposition, and collagen remodeling. In vivo interventions were subsequently implemented on mice exposed to PHMG aerosols, aiming to restore macrophage lipid efflux function. Remarkably, this intervention demonstrated the potential to retard the progression of pulmonary fibrosis. In conclusion, this study underscores the pivotal role of macrophage foaming in the pathogenesis of PHMG disinfectants-induced pulmonary fibrosis. Moreover, it provides compelling evidence to suggest that the regulation of macrophage efflux function holds promise for mitigating the progression of pulmonary fibrosis, thereby offering novel insights into the mechanisms underlying inhaled PHMG disinfectants-induced pulmonary fibrosis.


Asunto(s)
Desinfectantes , Fibrosis Pulmonar , Ratones , Animales , Fibrosis Pulmonar/metabolismo , Guanidina/toxicidad , Guanidina/metabolismo , Ratones Endogámicos C57BL , Aerosoles y Gotitas Respiratorias , Pulmón , Guanidinas/metabolismo , Macrófagos , Desinfectantes/farmacología , Lípidos
11.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928513

RESUMEN

Arterial macrophage cholesterol accumulation and impaired cholesterol efflux lead to foam cell formation and the development of atherosclerosis. Modified lipoproteins interact with toll-like receptors (TLR), causing an increased inflammatory response and altered cholesterol homeostasis. We aimed to determine the effects of TLR antagonists on cholesterol efflux and foam cell formation in human macrophages. Stimulated monocytes were treated with TLR antagonists (MIP2), and the cholesterol efflux transporter expression and foam cell formation were analyzed. The administration of MIP2 attenuated the foam cell formation induced by lipopolysaccharides (LPS) and oxidized low-density lipoproteins (ox-LDL) in stimulated THP-1 cells (p < 0.001). The expression of ATP-binding cassette transporters A (ABCA)-1, ABCG-1, scavenger receptor (SR)-B1, liver X receptor (LXR)-α, and peroxisome proliferator-activated receptor (PPAR)-γ mRNA and proteins were increased (p < 0.001) following MIP2 administration. A concentration-dependent decrease in the phosphorylation of p65, p38, and JNK was also observed following MIP2 administration. Moreover, an inhibition of p65 phosphorylation enhanced the expression of ABCA1, ABCG1, SR-B1, and LXR-α. TLR inhibition promoted the cholesterol efflux pathway by increasing the expression of ABCA-1, ABCG-1, and SR-B1, thereby reducing foam cell formation. Our results suggest a potential role of the p65/NF-kB/LXR-α/ABCA1 axis in TLR-mediated cholesterol homeostasis.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Células Espumosas , Lipoproteínas LDL , Receptores X del Hígado , Receptores Toll-Like , Humanos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos , Colesterol/metabolismo , Receptores X del Hígado/metabolismo , Receptores Toll-Like/metabolismo , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , PPAR gamma/metabolismo , Células THP-1 , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Lipopolisacáridos/farmacología , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética
12.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397063

RESUMEN

Persistent immune activation is linked to an increased risk of cardiovascular disease (CVD) in people with HIV (PWH) on antiretroviral therapy (ART). The NLRP3 inflammasome may contribute to elevated CVD risk in PWH. This study utilized peripheral blood mononuclear cells (PBMCs) from 25 PWH and 25 HIV-negative controls, as well as HIV in vitro infections. Transcriptional changes were analyzed using RNAseq and pathway analysis. Our results showed that in vitro HIV infection of macrophages and PBMCs from PWH had increased foam cell formation and expression of the NLRP3 inflammasome components and downstream cytokines (caspase-1, IL-1ß, and IL-18), which was reduced with inhibition of NLRP3 activity using MCC950. Transcriptomic analysis revealed an increased expression of multiple genes involved in lipid metabolism, cholesterol storage, coronary microcirculation disorders, ischemic events, and monocyte/macrophage differentiation and function with HIV infection and oxLDL treatment. HIV infection and NLRP3 activation increased foam cell formation and expression of proinflammatory cytokines, providing insights into the mechanisms underlying HIV-associated atherogenesis. This study suggests that HIV itself may contribute to increased CVD risk in PWH. Understanding the involvement of the inflammasome pathway in HIV atherosclerosis can help identify potential therapeutic targets to mitigate cardiovascular risks in PWH.


Asunto(s)
Aterosclerosis , Células Espumosas , Infecciones por VIH , Humanos , Aterosclerosis/inmunología , Citocinas , Células Espumosas/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
13.
Circulation ; 145(3): 206-218, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34913723

RESUMEN

BACKGROUND: Whereas several interventions can effectively lower lipid levels in people at risk for atherosclerotic cardiovascular disease (ASCVD), cardiovascular event risks remain, suggesting an unmet medical need to identify factors contributing to cardiovascular event risk. Monocytes and macrophages play central roles in atherosclerosis, but studies have yet to provide a detailed view of macrophage populations involved in increased ASCVD risk. METHODS: A novel macrophage foaming analytics tool, AtheroSpectrum, was developed using 2 quantitative indices depicting lipid metabolism and the inflammatory status of macrophages. A machine learning algorithm was developed to analyze gene expression patterns in the peripheral monocyte transcriptome of MESA participants (Multi-Ethnic Study of Atherosclerosis; set 1; n=911). A list of 30 genes was generated and integrated with traditional risk factors to create an ASCVD risk prediction model (30-gene cardiovascular disease risk score [CR-30]), which was subsequently validated in the remaining MESA participants (set 2; n=228); performance of CR-30 was also tested in 2 independent human atherosclerotic tissue transcriptome data sets (GTEx [Genotype-Tissue Expression] and GSE43292). RESULTS: Using single-cell transcriptomic profiles (GSE97310, GSE116240, GSE97941, and FR-FCM-Z23S), AtheroSpectrum detected 2 distinct programs in plaque macrophages-homeostatic foaming and inflammatory pathogenic foaming-the latter of which was positively associated with severity of atherosclerosis in multiple studies. A pool of 2209 pathogenic foaming genes was extracted and screened to select a subset of 30 genes correlated with cardiovascular event in MESA set 1. A cardiovascular disease risk score model (CR-30) was then developed by incorporating this gene set with traditional variables sensitive to cardiovascular event in MESA set 1 after cross-validation generalizability analysis. The performance of CR-30 was then tested in MESA set 2 (P=2.60×10-4; area under the receiver operating characteristic curve, 0.742) and 2 independent data sets (GTEx: P=7.32×10-17; area under the receiver operating characteristic curve, 0.664; GSE43292: P=7.04×10-2; area under the receiver operating characteristic curve, 0.633). Model sensitivity tests confirmed the contribution of the 30-gene panel to the prediction model (likelihood ratio test; df=31, P=0.03). CONCLUSIONS: Our novel computational program (AtheroSpectrum) identified a specific gene expression profile associated with inflammatory macrophage foam cells. A subset of 30 genes expressed in circulating monocytes jointly contributed to prediction of symptomatic atherosclerotic vascular disease. Incorporating a pathogenic foaming gene set with known risk factors can significantly strengthen the power to predict ASCVD risk. Our programs may facilitate both mechanistic investigations and development of therapeutic and prognostic strategies for ASCVD risk.


Asunto(s)
Aterosclerosis/terapia , Enfermedades Cardiovasculares/terapia , Células Espumosas/citología , Macrófagos/citología , Anciano , Anciano de 80 o más Años , Aterosclerosis/etiología , Aterosclerosis/genética , Enfermedades Cardiovasculares/complicaciones , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Placa Aterosclerótica/complicaciones , Placa Aterosclerótica/genética , Placa Aterosclerótica/terapia , Curva ROC , Riesgo , Calcificación Vascular/complicaciones , Calcificación Vascular/genética , Calcificación Vascular/terapia
14.
Neurobiol Dis ; 181: 106130, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068641

RESUMEN

Inflammation is a crucial part of the healing process after an ischemic stroke and is required to restore tissue homeostasis. However, the inflammatory response to stroke also worsens neurodegeneration and creates a tissue environment that is unfavorable to regeneration for several months, thereby postponing recovery. In animal models, inflammation can also contribute to the development of delayed cognitive deficits. Myeloid cells that take on a foamy appearance are one of the most prominent immune cell types within chronic stroke infarcts. Emerging evidence indicates that they form as a result of mechanisms of myelin lipid clearance becoming overwhelmed, and that they are a key driver of the chronic inflammatory response to stroke. Therefore, targeting lipid accumulation in foam cells may be a promising strategy for improving recovery. The aim of this review is to provide an overview of current knowledge regarding inflammation and foam cell formation in the brain in the weeks and months following ischemic stroke and identify targets that may be amenable to therapeutic intervention.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Células Espumosas/metabolismo , Accidente Cerebrovascular/metabolismo , Isquemia Encefálica/metabolismo , Inflamación , Lípidos
15.
FASEB J ; 36(2): e22154, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35032419

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) is an atypical protein kinase that controls protein synthesis in cells under stress. Although well studied in cancer, less is known about its roles in chronic inflammatory diseases. Here, we examined its regulation of macrophage cholesterol handling in the context of atherosclerosis. eEF2K mRNA expression and protein activity were upregulated in murine bone marrow-derived macrophages (BMDMs) exposed to oxidized low-density lipoprotein cholesterol (oxLDL). When incubated with oxLDL, BMDMs from eEF2K knockout (Eef2k-/- ) mice formed fewer Oil Red O+ foam cells than Eef2k+/+ BMDMs (12.5% ± 2.3% vs. 32.3% ± 2.0%, p < .01). Treatment with a selective eEF2K inhibitor, JAN-384, also decreased foam cell formation for C57BL/6J BMDMs and human monocyte-derived macrophages. Disabling eEF2K selectively decreased protein expression of the CD36 cholesterol uptake receptor, mediated by a reduction in the proportion of translationally active Cd36 mRNA. Eef2k-/- mice bred onto the Ldlr-/- background developed aortic sinus atherosclerotic plaques that were 30% smaller than Eef2k+/+ -Ldlr-/- mice after 16 weeks of high cholesterol diet (p < .05). Although accompanied by a reduction in plaque CD36+ staining (p < .05) and lower CD36 expression in circulating monocytes (p < .01), this was not associated with reduced lipid content in plaques as measured by oil red O staining. Finally, EEF2K and CD36 mRNA levels were higher in blood mononuclear cells from patients with coronary artery disease and recent myocardial infarction compared to healthy controls without coronary artery disease. These results reveal a new role for eEF2K in translationally regulating CD36 expression and foam cell formation in macrophages. Further studies are required to explore therapeutic targeting of eEF2K in atherosclerosis.


Asunto(s)
Antígenos CD36/metabolismo , Quinasa del Factor 2 de Elongación/metabolismo , Células Espumosas/metabolismo , Animales , Aterosclerosis/metabolismo , Colesterol/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
16.
Lipids Health Dis ; 22(1): 156, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736721

RESUMEN

Lipid metabolism disorders are considerably involved in the pathology of atherosclerosis; nevertheless, the fundamental mechanism is still largely unclear. This research sought to examine the function of lipophagy in lipid metabolism disorder-induced atherosclerosis and its fundamental mechanisms. Previously, Sirt6 has been reported to stimulate plaque stability by promoting macrophage autophagy. However, its role in macrophage lipophagy and its relationship with Wnt1 remains to be established. In this study, ApoE-/-: Sirt6-/- and ApoE-/-: Sirt6Tg mice were used and lipid droplets were analysed via transmission electron microscopy and Bodipy 493/503 staining in vitro. Atherosclerotic plaques in ApoE-/-: Sirt6-/- mice showed greater necrotic cores and lower stability score. Reconstitution of Sirt6 in atherosclerotic mice improved lipid metabolism disorder and prevented the progression of atherosclerosis. Furthermore, macrophages with Ac-LDL intervention showed more lipid droplets and increased expression of adipophilin and PLIN2. Reconstitution of Sirt6 recruited using SNF2H suppressed Wnt1 expression and improved lipid metabolism disorder by promoting lipophagy. In addition, downregulation of Sirt6 expression in Ac-LDL-treated macrophages inhibited lipid droplet degradation and stimulated foam cell formation. Innovative discoveries in the research revealed that atherosclerosis is caused by lipid metabolism disorders due to downregulated Sirt6 expression. Thus, modulating Sirt6's function in lipid metabolism might be a useful therapeutic approach for treating atherosclerosis.


Asunto(s)
Aterosclerosis , Trastornos del Metabolismo de los Lípidos , Placa Aterosclerótica , Sirtuinas , Animales , Ratones , Metabolismo de los Lípidos/genética , beta Catenina , Aterosclerosis/genética , Placa Aterosclerótica/genética , Macrófagos , Apolipoproteínas E/genética , Autofagia/genética , Sirtuinas/genética
17.
Int J Mol Sci ; 24(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36835055

RESUMEN

Probiotic bacteria have many protective effects against inflammatory disorders, though the mechanisms underlying their actions are poorly understood. The Lab4b consortium of probiotics contains four strains of lactic acid bacteria and bifidobacteria that are reflective of the gut of newborn babies and infants. The effect of Lab4b on atherosclerosis, an inflammatory disorder of the vasculature, has not yet been determined and was investigated on key processes associated with this disease in human monocytes/macrophages and vascular smooth muscle cells in vitro. The Lab4b conditioned medium (CM) attenuated chemokine-driven monocytic migration, monocyte/macrophage proliferation, uptake of modified LDL and macropinocytosis in macrophages together with the proliferation and platelet-derived growth factor-induced migration of vascular smooth muscle cells. The Lab4b CM also induced phagocytosis in macrophages and cholesterol efflux from macrophage-derived foam cells. The effect of Lab4b CM on macrophage foam cell formation was associated with a decrease in the expression of several key genes implicated in the uptake of modified LDL and induced expression of those involved in cholesterol efflux. These studies reveal, for the first time, several anti-atherogenic actions of Lab4b and strongly implicate further studies in mouse models of the disease in vivo and in clinical trials.


Asunto(s)
Aterosclerosis , Probióticos , Animales , Ratones , Recién Nacido , Humanos , Macrófagos/metabolismo , Células Espumosas/metabolismo , Aterosclerosis/metabolismo , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo
18.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768382

RESUMEN

Cholesterol accumulation in macrophages leads to the formation of foam cells and increases the risk of developing atherosclerosis. We have verified whether hydroxytyrosol (HT), a phenolic compound with anti-inflammatory and antioxidant properties, can reduce the cholesterol build up in THP-1 macrophage-derived foam cells. We have also investigated the potential mechanisms. Oil Red O staining and high-performance liquid chromatography (HPLC) assays were utilized to detect cellular lipid accumulation and cholesterol content, respectively, in THP-1 macrophages foam cells treated with HT. The impact of HT on cholesterol metabolism-related molecules (SR-A1, CD36, LOX-1, ABCA1, ABCG1, PPARγ and LRX-α) in foam cells was assessed using real-time PCR (RT-qPCR) and Western blot analyses. Finally, the effect of HT on the adhesion of THP-1 monocytes to human vascular endothelial cells (HUVEC) was analyzed to study endothelial activation. We found that HT activates the PPARγ/LXRα pathway to upregulate ABCA1 expression, reducing cholesterol accumulation in foam cells. Moreover, HT significantly inhibited monocyte adhesion and reduced the levels of adhesion factors (ICAM-1 and VCAM-1) and pro-inflammatory factors (IL-6 and TNF-α) in LPS-induced endothelial cells. Taken together, our findings suggest that HT, with its ability to interfere with the import and export of cholesterol, could represent a new therapeutic strategy for the treatment of atherosclerotic disease.


Asunto(s)
Células Espumosas , PPAR gamma , Humanos , Células Espumosas/metabolismo , PPAR gamma/metabolismo , Células Endoteliales/metabolismo , Colesterol/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Receptores X del Hígado/metabolismo
19.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686247

RESUMEN

This study analyzes sex-based differences in renal structure and the response to the Angiotensin-Converting Enzyme (ACE) inhibitor enalapril in a mouse model of atherosclerosis. Eight weeks old ApoE-/- mice received enalapril (5 mg/kg/day, subcutaneous) or PBS (control) for an additional 14 weeks. Each group consisted of six males and six females. Females exhibited elevated LDL-cholesterol levels, while males presented higher creatinine levels and proteinuria. Enalapril effectively reduced blood pressure in both groups, but proteinuria decreased significantly only in females. Plaque size analysis and assessment of kidney inflammation revealed no significant sex-based differences. However, males displayed more severe glomerular injury, with increased mesangial expansion, mesangiolysis, glomerular foam cells, and activated parietal epithelial cells (PECs). Enalapril mitigated mesangial expansion, glomerular inflammation (particularly in the female group), and hypertrophy of the PECs in males. This study demonstrates sex-based differences in the response to enalapril in a mouse model of atherosclerosis. Males exhibited more severe glomerular injury, while enalapril provided renal protection, particularly in females. These findings suggest potential sex-specific considerations for ACE inhibitor therapy in chronic kidney disease and atherosclerosis cardiovascular disease. Further research is needed to elucidate the underlying mechanism behind these observations.


Asunto(s)
Aterosclerosis , Enfermedades Renales , Femenino , Masculino , Animales , Ratones , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Caracteres Sexuales , Enalapril/farmacología , Aterosclerosis/tratamiento farmacológico , Enfermedades Renales/tratamiento farmacológico , Apolipoproteínas E/genética , Antivirales , Modelos Animales de Enfermedad
20.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902231

RESUMEN

Macrophages express the A subunit of coagulation factor XIII (FXIII-A), a transglutaminase which cross-links proteins through Nε-(γ-L-glutamyl)-L-lysyl iso-peptide bonds. Macrophages are major cellular constituents of the atherosclerotic plaque; they may stabilize the plaque by cross-linking structural proteins and they may become transformed into foam cells by accumulating oxidized LDL (oxLDL). The combination of oxLDL staining by Oil Red O and immunofluorescent staining for FXIII-A demonstrated that FXIII-A is retained during the transformation of cultured human macrophages into foam cells. ELISA and Western blotting techniques revealed that the transformation of macrophages into foam cells elevated the intracellular FXIII-A content. This phenomenon seems specific for macrophage-derived foam cells; the transformation of vascular smooth muscle cells into foam cells fails to induce a similar effect. FXIII-A containing macrophages are abundant in the atherosclerotic plaque and FXIII-A is also present in the extracellular compartment. The protein cross-linking activity of FXIII-A in the plaque was demonstrated using an antibody labeling the iso-peptide bonds. Cells showing combined staining for FXIII-A and oxLDL in tissue sections demonstrated that FXIII-A-containing macrophages within the atherosclerotic plaque are also transformed into foam cells. Such cells may contribute to the formation of lipid core and the plaque structurization.


Asunto(s)
Aterosclerosis , Factor XIII , Placa Aterosclerótica , Humanos , Aterosclerosis/metabolismo , Factor XIII/metabolismo , Células Espumosas/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , Péptidos/metabolismo , Placa Aterosclerótica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA