RESUMEN
Ghost forests consisting of dead trees adjacent to marshes are striking indicators of climate change, and marsh migration into retreating coastal forests is a primary mechanism for marsh survival in the face of global sea-level rise. Models of coastal transgression typically assume inundation of a static topography and instantaneous conversion of forest to marsh with rising seas. In contrast, here we use four decades of satellite observations to show that many low-elevation forests along the US mid-Atlantic coast have survived despite undergoing relative sea-level rise rates (RSLRR) that are among the fastest on Earth. Lateral forest retreat rates were strongly mediated by topography and seawater salinity, but not directly explained by spatial variability in RSLRR, climate, or disturbance. The elevation of coastal tree lines shifted upslope at rates correlated with, but far less than, contemporary RSLRR. Together, these findings suggest a multi-decadal lag between RSLRR and land conversion that implies coastal ecosystem resistance. Predictions based on instantaneous conversion of uplands to wetlands may therefore overestimate future land conversion in ways that challenge the timing of greenhouse gas fluxes and marsh creation, but also imply that the full effects of historical sea-level rise have yet to be realized.
Asunto(s)
Ecosistema , Elevación del Nivel del Mar , Bosques , Humedales , Cambio Climático , ÁrbolesRESUMEN
BACKGROUND: The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE: We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS: Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.
Asunto(s)
Árboles , Árboles/fisiología , Árboles/crecimiento & desarrollo , Árboles/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Permeabilidad , Sequías , Modelos Biológicos , Madera/fisiología , Madera/anatomía & histología , Agua/fisiología , Agua/metabolismoRESUMEN
Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.
Asunto(s)
Bosques , Árboles , Sequías , Resistencia a la Sequía , Cambio ClimáticoRESUMEN
Sensitivity of forest mortality to drought in carbon-dense tropical forests remains fraught with uncertainty, while extreme droughts are predicted to be more frequent and intense. Here, the potential of temporal autocorrelation of high-frequency variability in Landsat Enhanced Vegetation Index (EVI), an indicator of ecosystem resilience, to predict spatial and temporal variations of forest biomass mortality is evaluated against in situ census observations for 64 site-year combinations in Costa Rican tropical dry forests during the 2015 ENSO drought. Temporal autocorrelation, within the optimal moving window of 24 months, demonstrated robust predictive power for in situ mortality (leave-one-out cross-validation R2 = 0.54), which allows for estimates of annual biomass mortality patterns at 30 m resolution. Subsequent spatial analysis showed substantial fine-scale heterogeneity of forest mortality patterns, largely driven by drought intensity and ecosystem properties related to plant water use such as forest deciduousness and topography. Highly deciduous forest patches demonstrated much lower mortality sensitivity to drought stress than less deciduous forest patches after elevation was controlled. Our results highlight the potential of high-resolution remote sensing to "fingerprint" forest mortality and the significant role of ecosystem heterogeneity in forest biomass resistance to drought.
Asunto(s)
Sequías , Ecosistema , Biomasa , Bosques , Plantas , ÁrbolesRESUMEN
Despite great concern for drought-driven forest mortality, the effects of frequent low-intensity droughts have been largely overlooked in the boreal forest because of their negligible impacts over the short term. In this study, we used data from 6876 permanent plots distributed across most of the Canadian boreal zone to assess the effects of repeated low-intensity droughts on forest mortality. Specifically, we compared the relative impact of sequential years under low-intensity dry conditions with the effects of variables related to the intensity of dry conditions, stand characteristics, and local climate. Then, we searched for thresholds in forest mortality as a function of the number of years between two forest surveys affected by dry conditions of any intensity. Our results showed that, in general, frequent low-intensity dry conditions had stronger effects on forest mortality than the intensity of the driest conditions in the plot. Frequent low-intensity dry conditions acted as an inciting factor of forest mortality exacerbated by stand characteristics and environmental conditions. Overall, the mortality of forests dominated by shade-tolerant conifers was significantly and positively related to frequent low-intensity dry conditions, supporting, in some cases, the existence of thresholds delimiting contrasting responses to drought. In mixtures with broadleaf species, however, sequential dry conditions had a negligible impact. The effects of frequent dry conditions on shade-intolerant forests mainly depended on local climate, inciting or mitigating the mortality of forests located in wet places and dominated by broadleaf species or jack pine, respectively. Our results highlight the importance of assessing not only climate-driven extreme events but also repeated disturbances of low intensity. In the long term, the smooth response of forests to dry conditions might abruptly change leading to disproportional mortality triggered by accumulated stress conditions. Forest and wildlife managers should consider the cumulative effects of climate change on mortality to avoid shortfalls in timber and habitat.
Asunto(s)
Sequías , Taiga , Canadá , Cambio Climático , Bosques , ÁrbolesRESUMEN
Mapping geographic mosaics of genetic variation and their consequences via genotype x environment interactions at large extents and high resolution has been limited by the scalability of DNA sequencing. Here, we address this challenge for cytotype (chromosome copy number) variation in quaking aspen, a drought-impacted foundation tree species. We integrate airborne imaging spectroscopy data with ground-based DNA sequencing data and canopy damage data in 391 km2 of southwestern Colorado. We show that (1) aspen cover and cytotype can be remotely sensed at 1 m spatial resolution, (2) the geographic mosaic of cytotypes is heterogeneous and interdigitated, (3) triploids have higher leaf nitrogen, canopy water content, and carbon isotope shifts (δ13 C) than diploids, and (4) canopy damage varies among cytotypes and depends on interactions with topography, canopy height, and trait variables. Triploids are at higher risk in hotter and drier conditions.
Asunto(s)
Populus , Tecnología de Sensores Remotos , Sequías , Populus/genética , Árboles , TriploidíaRESUMEN
Abiotic forest disturbances are an important driver of ecosystem dynamics. In Europe, storms and fires have been identified as the most important abiotic disturbances in the recent past. Yet, how strongly these agents drive local disturbance regimes compared to other agents (e.g., biotic, human) remains unresolved. Furthermore, whether storms and fires are responsible for the observed increase in forest disturbances in Europe is debated. Here, we provide quantitative evidence for the prevalence of storm and fire disturbances in Europe 1986-2016. For 27 million disturbance patches mapped from satellite data, we determined whether they were caused by storm or fire, using a random forest classifier and a large reference dataset of true disturbance occurrences. We subsequently analyzed patterns of disturbance prevalence (i.e., the share of an agent on the overall area disturbed) in space and time. Storm- and fire-related disturbances each accounted for approximately 7% of all disturbances recorded in Europe in the period 1986-2016. Storm-related disturbances were most prevalent in western and central Europe, where they locally accounted for >50% of all disturbances, but we also identified storm-related disturbances in south-eastern and eastern Europe. Fire-related disturbances were a major disturbance agent in southern and south-eastern Europe, but fires also occurred in eastern and northern Europe. The prevalence and absolute area of storm-related disturbances increased over time, whereas no trend was detected for fire-related disturbances. Overall, we estimate an average of 127,716 (97,680-162,725) ha of storm-related disturbances per year and an average of 141,436 (107,353-181,022) ha of fire-related disturbances per year. We conclude that abiotic disturbances caused by storm and fire are important drivers of forest dynamics in Europe, but that their influence varies substantially by region. Our analysis further suggests that increasing storm-related disturbances are an important driver of Europe's changing forest disturbance regimes.
Asunto(s)
Ecosistema , Incendios , Europa (Continente) , Europa Oriental , Humanos , Factores de Tiempo , ÁrbolesRESUMEN
Climate-induced forest mortality is being increasingly observed throughout the globe. Alarmingly, it is expected to exacerbate under climate change due to shifting precipitation patterns and rising air temperature. However, the impact of concomitant changes in atmospheric humidity and CO2 concentration through their influence on stomatal kinetics remains a subject of debate and inquiry. By using a dynamic soil-plant-atmosphere model, mortality risks associated with hydraulic failure and stomatal closure for 13 temperate and tropical forest biomes across the globe are analyzed. The mortality risk is evaluated in response to both individual and combined changes in precipitation amounts and their seasonal distribution, mean air temperature, specific humidity, and atmospheric CO2 concentration. Model results show that the risk is predicted to significantly increase due to changes in precipitation and air temperature regime for the period 2050-2069. However, this increase may largely get alleviated by concurrent increases in atmospheric specific humidity and CO2 concentration. The increase in mortality risk is expected to be higher for needleleaf forests than for broadleaf forests, as a result of disparity in hydraulic traits. These findings will facilitate decisions about intervention and management of different forest types under changing climate.
Asunto(s)
Bosques , Transpiración de Plantas/fisiología , Atmósfera/análisis , Dióxido de Carbono/análisis , Cambio Climático , Simulación por Computador , Sequías , Ecosistema , Humedad , Estomas de Plantas/fisiología , Lluvia , Suelo/química , Temperatura , Árboles/fisiología , Agua/fisiologíaRESUMEN
Growing evidence indicates that tree-stem methane (CH4 ) emissions may be an important and unaccounted-for component of local, regional and global carbon (C) budgets. Studies to date have focused on upland and freshwater swamp-forests; however, no data on tree-stem fluxes from estuarine species currently exist. Here we provide the first-ever mangrove tree-stem CH4 flux measurements from >50 trees (n = 230 measurements), in both standing dead and living forest, from a region suffering a recent large-scale climate-driven dieback event (Gulf of Carpentaria, Australia). Average CH4 emissions from standing dead mangrove tree-stems was 249.2 ± 41.0 µmol m-2 d-1 and was eight-fold higher than from living mangrove tree-stems (37.5 ± 5.8 µmol m-2 d-1 ). The average CH4 flux from tree-stem bases (c. 10 cm aboveground) was 1071.1 ± 210.4 and 96.8 ± 27.7 µmol m-2 d-1 from dead and living stands respectively. Sediment CH4 fluxes and redox potentials did not differ significantly between living and dead stands. Our results suggest both dead and living tree-stems act as CH4 conduits to the atmosphere, bypassing potential sedimentary oxidation processes. Although large uncertainties exist when upscaling data from small-scale temporal measurements, we estimated that dead mangrove tree-stem emissions may account for c. 26% of the net ecosystem CH4 flux.
Asunto(s)
Avicennia/metabolismo , Carbono/metabolismo , Bosques , Metano/metabolismo , Tallos de la Planta/metabolismo , Geografía , Sedimentos Geológicos/química , Oxidación-Reducción , Queensland , VolatilizaciónRESUMEN
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
Asunto(s)
Bosques , Humedad , Árboles/fisiología , Clima Tropical , Dióxido de Carbono/metabolismo , Modelos TeóricosRESUMEN
Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality. A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology-hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality. Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions. Plant hydraulics integrated water stress along the soil-plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water.
Asunto(s)
Populus/fisiología , Agua/fisiología , Simulación por Computador , Deshidratación , Sequías , Ecosistema , Geografía , Suelo , Sudoeste de Estados Unidos , Presión de VaporRESUMEN
Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here, we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought, and insect outbreaks to better reproduce observation-based spatial patterns in k is identified. As direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects such as carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects and pathogens are not explicitly treated in these models.
Asunto(s)
Ciclo del Carbono , Cambio Climático , Bosques , Carbono , Ecosistema , Modelos Teóricos , ÁrbolesRESUMEN
Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co-occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity.
Asunto(s)
Carbono/deficiencia , Pinus/fisiología , Transpiración de Plantas/fisiología , Carbohidratos/análisis , Carbohidratos/fisiología , Respiración de la Célula/fisiología , Sequías , Ósmosis , Floema/fisiología , Fotosíntesis/fisiología , Factores de Tiempo , Árboles , Agua/fisiología , Xilema/fisiologíaRESUMEN
European forests are an important source for timber production, human welfare, income, protection and biodiversity. During the last two decades, Europe has experienced a number of droughts which have been exceptional within the last 500 years, both in terms of duration and intensity. These droughts seem to leave remarkable imprints on the mortality dynamics of European forests. However, systematic observations on tree decline, with emphasis on a single species, has been scarce so far so that our understanding of mortality dynamics and drought occurrence is still limited at a continental scale. Here, we make use of the ICP Forest crown defoliation dataset, permitting us to retrospectively monitor tree mortality for all major conifers, major broadleaves, as well as a pooled dataset of minor tree species in Europe. In total, we analysed more than three million observations gathered during the last 25 years and employed a high-resolution drought index which can assess soil moisture anomaly based on a hydrological water-balance and runoff model. We found overall and species-specific increasing trends in mortality rates, accompanied by decreasing soil moisture. A generalized linear mixed model identified a previous-year soil moisture anomaly as the most important driver of mortality patterns in conifers, but the response was not uniform across the numerous analysed plots. We conclude that mortality patterns in European forests are currently reaching a concerning upward trend which could be further accelerated by global change-type droughts in the near future.
Asunto(s)
Bosques , Árboles , Humanos , Estudios Retrospectivos , Árboles/fisiología , Sequías , Suelo , Cambio ClimáticoRESUMEN
Drought-induced die-off in forests is becoming a widespread phenomenon across biomes, but the factors determining potential shifts in taxonomic and structural characteristics following mortality are largely unknown. We report on short-term patterns of resilience after drought-induced episodes of tree mortality across 48 monospecific forests from Morocco to Slovenia. Field surveys recorded plants growing beneath a canopy of dead, defoliated and healthy trees. Site-level structural characteristics and management legacy were also recorded. Resilience was assessed with reference to forest composition (self-replacement), structure, and changes in the climatic suitability of the replacing community relative to the climatic suitability of the dominant pre-drought species. Species climatic suitability was estimated from species distribution models calculated for the baseline 1970-2000 period. Short-term resilience decreased under higher levels of drought-induced damage to the dominant species and with evidences of management legacy. Greater resilience of structural features (fewer gaps, greater canopy height) was observed overall in forests with a larger basal area. Less gaps were also associated with greater woody species richness after drought. Overall, Fagaceae-dominated forests exhibited greater structural resilience than conifer-dominated ones. On those sites that were more climatically suited to the dominant pre-drought species, replacing communities tended to exhibit lower climatic suitability than pre-drought dominant species. There was a greater loss of climatic suitability under a legacy of management and drought intensity, but less so in the replacing communities with higher woody species richness. Our study reveals that short-term forest resilience is determined by pre-drought stand characteristics, often reflecting previous management legacies, and by the impact of drought on both the dominant pre-drought species and post-drought replacing species in terms of their climatic suitability.
Asunto(s)
Sequías , Bosques , Ecosistema , Eslovenia , ÁrbolesRESUMEN
Climate change is altering the conditions for tree recruitment, growth, and survival, and impacting forest community composition. Across southeast Alaska, USA, and British Columbia, Canada, Callitropsis nootkatensis (Alaska yellow-cedar) is experiencing extensive climate change-induced canopy mortality due to fine-root death during soil freezing events following warmer winters and the loss of insulating snowpack. Here, we examine the effects of ongoing, climate-driven canopy mortality on forest community composition and identify potential shifts in stand trajectories due to the loss of a single canopy species. We sampled canopy and regenerating forest communities across the extent of C. nootkatensis decline in southeast Alaska to quantify the effects of climate, community, and stand-level drivers on C. nootkatensis canopy mortality and regeneration as well as postdecline regenerating community composition. Across the plot network, C. nootkatensis exhibited significantly higher mortality than co-occurring conifers across all size classes and locations. Regenerating community composition was highly variable but closely related to the severity of C. nootkatensis mortality. Callitropsis nootkatensis canopy mortality was correlated with winter temperatures and precipitation as well as local soil drainage, with regenerating community composition and C. nootkatensis regeneration abundances best explained by available seed source. In areas of high C. nootkatensis mortality, C. nootkatensis regeneration was low and replaced by Tsuga. Our study suggests that climate-induced forest mortality is driving alternate successional pathways in forests where C. nootkatensis was once a major component. These pathways are likely to lead to long-term shifts in forest community composition and stand dynamics. Our analysis fills a critical knowledge gap on forest ecosystem response and rearrangement following the climate-driven decline of a single species, providing new insight into stand dynamics in a changing climate. As tree species across the globe are increasingly stressed by climate change-induced alteration of suitable habitat, identifying the autecological factors contributing to successful regeneration, or lack thereof, will provide key insight into forest resilience and persistence on the landscape.
RESUMEN
Forested ecosystems throughout the world are experiencing increases in the incidence and magnitude of insect-induced tree mortality with large ecologic ramifications. Interestingly, correlations between water quality and the extent of tree mortality in Colorado montane ecosystems suggest compensatory effects from adjacent live vegetation that mute responses in less severely impacted forests. To this end, we investigated whether the composition of the soil bacterial community and associated functionality beneath beetle-killed lodgepole pine was influenced by the extent of surrounding tree mortality. The most pronounced changes were observed in the potentially active bacterial community, where alpha diversity increased in concert with surrounding tree mortality until mortality exceeded a tipping point of ~30 to 40%, after which diversity stabilized and decreased. Community structure also clustered in association with the extent of surrounding tree mortality with compositional trends best explained by differences in NH4+ concentrations and C/N ratios. C/N ratios, which were lower in soils under beetle-killed trees, further correlated with the relative abundance of putative nitrifiers and exoenzyme activity. Collectively, the response of soil microorganisms that drive heterotrophic respiration and decay supports observations of broader macroscale threshold effects on water quality in heavily infested forests and could be utilized as a predictive mechanism during analogous ecosystem disruptions.IMPORTANCE Forests around the world are succumbing to insect infestation with repercussions for local soil biogeochemistry and downstream water quality and quantity. This study utilized microbial community dynamics to address why we are observing watershed scale biogeochemical impacts from forest mortality in some impacted areas but not others. Through a unique "tree-centric" approach, we were able to delineate plots with various tree mortality levels within the same watershed to see if surviving surrounding vegetation altered microbial and biogeochemical responses. Our results suggest that forests with lower overall tree mortality levels are able to maintain "normal" ecosystem function, as the bacterial community appears resistant to tree death. However, surrounding tree mortality influences this mitigating effect with various linear and threshold responses whereupon the bacterial community and its function are altered. Our study lends insight into how microscale responses propagate upward into larger-scale observations, which may be useful for future predictions during analogous disruptions.