Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neuroeng Rehabil ; 21(1): 157, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267118

RESUMEN

Many studies over the recent decades have attempted the modulation of motor learning using brain stimulation. Alternating currents allow for researchers not only to electrically stimulate the brain, but to further investigate the effects of specific frequencies, in and beyond the context of their endogenous associations. Transcranial alternating current stimulation (tACS) has therefore been used during motor learning to modulate aspects of acquisition, consolidation and performance of a learned motor skill. Despite numerous reviews on the effects of tACS, and its role in motor learning, there are few studies which synthesize the numerous frequencies and their respective theoretical mechanisms as they relate to motor and perceptual processes. Here we provide a short overview of the main stimulation frequencies used in motor learning modulation (e.g., alpha, beta, and gamma), and discuss the effect and proposed mechanisms of these studies. We summarize with the current state of the field, the effectiveness and variability in motor learning modulation, and novel mechanistic proposals from other fields.


Asunto(s)
Aprendizaje , Destreza Motora , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Aprendizaje/fisiología , Destreza Motora/fisiología , Corteza Motora/fisiología
2.
Sensors (Basel) ; 24(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38793881

RESUMEN

The advancement of underwater cognitive acoustic network (UCAN) technology aims to improve spectral efficiency and ensure coexistence with the underwater ecosystem. As the demand for short-term underwater applications operated under distributed topologies, like autonomous underwater vehicle cluster operations, continues to grow, this paper presents Underwater Multi-channel Medium Access Control with Cognitive Acoustics (UMMAC-CA) as a suitable channel access protocol for distributed UCANs. UMMAC-CA operates on a per-frame basis, similar to the Multi-channel Medium Access Control with Cognitive Radios (MMAC-CR) designed for distributed cognitive radio networks, but with notable differences. It employs a pre-determined data transmission matrix to allow all nodes to access the channel without contention, thus reducing the channel access overhead. In addition, to mitigate the communication failures caused by randomly occurring interferers, UMMAC-CA allocates at least 50% of frame time for interferer sensing. This is possible because of the fixed data transmission scheduling, which allows other nodes to sense for interferers simultaneously while a specific node is transmitting data. Simulation results demonstrate that UMMAC-CA outperforms MMAC-CR across various metrics, including those of the sensing time rate, controlling time rate, and throughput. In addition, except for in the case where the data transmission time coefficient equals 1, the message overhead performance of UMMAC-CA is also superior to that of MMAC-CR. These results underscore the suitability of UMMAC-CA for use in challenging underwater applications requiring multi-channel cognitive communication within a distributed network architecture.

3.
Sensors (Basel) ; 24(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931657

RESUMEN

OBJECTIVE: The present pilot study aimed to propose an innovative scale-independent measure based on electroencephalographic (EEG) signals for the identification and quantification of the magnitude of chronic pain. METHODS: EEG data were collected from three groups of participants at rest: seven healthy participants with pain, 15 healthy participants submitted to thermal pain, and 66 participants living with chronic pain. Every 30 s, the pain intensity score felt by the participant was also recorded. Electrodes positioned in the contralateral motor region were of interest. After EEG preprocessing, a complex analytical signal was obtained using Hilbert transform, and the upper envelope of the EEG signal was extracted. The average coefficient of variation of the upper envelope of the signal was then calculated for the beta (13-30 Hz) band and proposed as a new EEG-based indicator, namely Piqß, to identify and quantify pain. MAIN RESULTS: The main results are as follows: (1) A Piqß threshold at 10%, that is, Piqß ≥ 10%, indicates the presence of pain, and (2) the higher the Piqß (%), the higher the extent of pain. CONCLUSIONS: This finding indicates that Piqß can objectively identify and quantify pain in a population living with chronic pain. This new EEG-based indicator can be used for objective pain assessment based on the neurophysiological body response to pain. SIGNIFICANCE: Objective pain assessment is a valuable decision-making aid and an important contribution to pain management and monitoring.


Asunto(s)
Dolor Crónico , Electroencefalografía , Humanos , Electroencefalografía/métodos , Proyectos Piloto , Masculino , Femenino , Adulto , Dolor Crónico/diagnóstico , Dolor Crónico/fisiopatología , Dimensión del Dolor/métodos , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Adulto Joven
4.
Neuroimage ; 274: 120112, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37105338

RESUMEN

Adolescence is a stage of development characterized by neurodevelopmental specialization of cognitive processes. In particular, working memory continues to improve through adolescence, with increases in response accuracy and decreases in response latency continuing well into the twenties. Human electroencephalogram (EEG) studies indicate that gamma oscillations (35-65 Hz) during the working memory delay period support the maintenance of mnemonic information guiding subsequent goal-driven behavior, which decrease in power with development. Importantly, recent electrophysiological studies have shown that gamma events, more so than sustained activity, may underlie working memory maintenance during the delay period. However, developmental differences in gamma events during working memory have not been studied. Here, we used EEG in conjunction with a novel spectral event processing approach to investigate age-related differences in transient gamma band activity during a memory guided saccade (MGS) task in 164 10- to 30-year-olds. Total gamma power was found to significantly decrease through adolescence, replicating prior findings. Results from the spectral event pipeline showed age-related decreases in the mean power of gamma events and trial-by-trial power variability across both the delay period and fixation epochs of the MGS task. In addition, we found that while event number decreased with age during the fixation period, the developmental decrease during the delay period was more dramatic, resulting in an increase in event spiking from fixation to delay in adolescence but not adulthood. While average power of the transient gamma events was found to mediate age-related differences in total gamma power in the fixation and delay periods, the number of gamma events was related to total power in only the delay period, suggesting that the power of gamma events may underlie the sustained gamma activity seen in EEG literature while the number of events may directly support age-related improvements in working memory maintenance. Our findings provide compelling new evidence for mechanistic changes in neural processing characterized by refinements in neural function as behavior becomes optimized in adulthood.


Asunto(s)
Electroencefalografía , Memoria a Corto Plazo , Humanos , Adolescente , Memoria a Corto Plazo/fisiología , Tiempo de Reacción/fisiología , Electroencefalografía/métodos
5.
Neuroimage ; 280: 120332, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37619796

RESUMEN

The majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as "canonical" frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network. The resting-state neural activity of 195 cognitively healthy subjects from three different databases (MEG: 123 subjects; EEG1: 27 subjects; EEG2: 45 subjects) was analysed. In a first step, MEG and EEG signals were filtered with a narrow-band filter bank (1 Hz bandwidth) from 1 to 70 Hz with a 0.5 Hz step. Next, the connectivity in each of these filtered signals was estimated using the orthogonalized version of the amplitude envelope correlation to obtain the frequency-dependent functional neural network. Finally, a community detection algorithm was used to identify communities in the frequency domain showing a similar network topology. We have called this approach the "Connectivity-based Meta-Bands" (CMB) algorithm. Additionally, two types of synthetic signals were used to configure the hyper-parameters of the CMB algorithm. We observed that the classical approaches to band segmentation are partially aligned with the underlying network topologies at group level for the MEG signals, but they are missing individual idiosyncrasies that may be biasing previous studies, as revealed by our methodology. On the other hand, the sensitivity of EEG signals to reflect this underlying frequency-dependent network structure is limited, revealing a simpler frequency parcellation, not aligned with that defined by the "canonical" frequency bands. To the best of our knowledge, this is the first study that proposes an unsupervised band segmentation method based on the topological similarity of functional neural network across frequencies. This methodology fully accounts for subject-specific patterns, providing more robust and personalized analyses, and paving the way for new studies focused on exploring the frequency-dependent structure of brain connectivity.


Asunto(s)
Electroencefalografía , Magnetoencefalografía , Humanos , Algoritmos , Encéfalo , Bases de Datos Factuales
6.
Eur J Neurosci ; 57(11): 1815-1833, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37139573

RESUMEN

The individual alpha frequency (IAF) has previously been identified as a unique neural signature within the 8-12 Hz alpha frequency band. However, the day-to-day variability of this feature is unknown. To investigate this, healthy participants recorded their own brain activity daily at home using the Muse 2 headband, a low-cost consumer-grade mobile electroencephalography (EEG) device. Resting-state recordings of all participants using a high-density (HD) EEG were also collected in lab before and after the at-home data collection period. We found that the IAF extracted from the Muse 2 was comparable to that of location-matched HD-EEG electrodes. No significant difference was found between these IAF values before and after the at-home recording period for the HD-EEG device. Similarly, there was also no statistically significant difference between the beginning and end of the at-home recording period for the Muse 2 headband over 1 month. Despite the group-level stability of IAF, the individual-level day-to-day IAF variability carried mental health-relevant information: Exploratory analyses revealed a relationship between IAF day-to-day variability and trait anxiety. We also noted that the IAF systematically varied across the scalp and although the Muse 2 electrodes do not cover the occipital lobe where alpha oscillations were the strongest, IAFs measured in the temporal lobe and occipital lobe were strongly correlated. Altogether, these results show that mobile EEG devices are useful for studying IAF variability. The relationship between day-to-day variability of region-specific IAF and the dynamics of psychiatric symptoms, particularly anxiety, should be further investigated.


Asunto(s)
Alprostadil , Electroencefalografía , Humanos , Electroencefalografía/métodos , Lóbulo Occipital , Lóbulo Temporal , Ansiedad , Encéfalo , Ritmo alfa
7.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765909

RESUMEN

This paper addresses the limitations of using smartphones in innovative localization systems based on audio signal processing, particularly in the frequency range of 18-22 kHz, due to the lack of technical specifications and noise characterization. We present a comprehensive study on signal design and performance analysis for acoustic communication in air ducts, focusing on signal propagation in indoor environments considering room acoustics and signal behavior. The research aims to determine optimal parameters, including the frequency band, signal types, signal length, pause duration, and sampling frequency, for the efficient transmission and reception of acoustic signals for commercial off-the-shelf (COST) devices. Factors like inter-symbol interference (ISI) and multiple access interference (MAI) that affect signal detection accuracy are considered. The measurements help define the frequency spectrum for common devices like smartphones, speakers, and sound cards. We propose a custom signal with specific properties and reasons for their selection, setting the signal length at 50 ms and a pause time of 5 ms to minimize overlap and interference between consecutive signals. The sampling rate is fixed at 48 kHz to maintain the required resolution for distinguishing individual signals in correlation-based signal processing.

8.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177539

RESUMEN

Rolling element bearing (REB) vibration signals under variable speed (VS) have non-stationary characteristics. Order tracking (OT) and time-frequency analysis (TFA) are two widely used methods for REB fault diagnosis under VS. However, the effect of OT methods is affected by resampling errors and close-order harmonic interference, while the accuracy of TFA methods is mainly limited by time-frequency resolution and ridge extraction algorithms. To address this issue, a novel method based on envelope spectrum fault characteristic frequency band identification (FCFBI) is proposed. Firstly, the characteristics of the bearing fault vibration signal's envelope spectrum under VS are analyzed in detail and the fault characteristic frequency band (FCFB) is introduced as a new and effective representation of faults. Then, fault templates based on FCFB are constructed as reference for fault identification. Finally, based on the calculation of the correlation coefficients between the envelope spectrum and fault templates in the extended FCFB, the bearing fault can be diagnosed automatically according to the preset correlation coefficient criterion. Two bearing VS experiments indicate that the proposed method can achieve satisfactory diagnostic accuracy. The comparison of OT and TFA methods further demonstrates the comprehensive superiority of the proposed method in the overall consideration of accuracy, diagnostic time, tachometer dependency, and automatic degree.

9.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36992031

RESUMEN

Due to the unpredictable presence of Non-Cognitive Users (NCUs) in the time and frequency domains, the number of available channels (i.e., channels where no NCUs exist) and corresponding channel indices per Cognitive User (CU) may differ. In this paper, we propose a heuristic channel allocation method referred to as Enhanced Multi-Round Resource Allocation (EMRRA), which employs the asymmetry of available channels in existing MRRA to randomly allocate a CU to a channel in each round. EMRRA is designed to enhance the overall spectral efficiency and fairness of channel allocation. To do this, the available channel with the lowest redundancy is primarily selected upon allocating a channel to a CU. In addition, when there are multiple CUs with the same allocation priority, the CU with the smallest number of available channels is chosen. We execute extensive simulations in order to investigate the effect of the asymmetry of available channels on CUs and compare the performance of EMRRA to that of MRRA. As a result, in addition to the asymmetry of available channels, it is confirmed that most of the channels are simultaneously available to multiple CUs. Furthermore, EMRRA outperforms MRRA in terms of the channel allocation rate, fairness, and drop rate and has a slightly higher collision rate. In particular, EMRRA can remarkably reduce the drop rate compared to MRRA.

10.
Sensors (Basel) ; 23(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37447658

RESUMEN

This paper presents a low-noise amplifier (LNA) with an integrated input and output matching network designed using RF-SOI technology. This LNA was designed with a resistive feedback topology and an inductive peaking technology to provide 600 MHz of bandwidth in the N79 band (4.4 GHz to 5.0 GHz). Generally, the resistive feedback structure used in broadband applications allows the input and output impedance to be made to satisfy the broadband conditions through low-impedance feedback. However, feedback impedance for excessive broadband characteristics can degrade the noise performance as a consequence. To achieve a better noise performance for a bandwidth of 600 MHz, the paper provided an optimized noise performance by selecting the feedback resistor value optimized for the N79 band. Additionally, an inductive peaking technique was applied to the designed low-noise amplifier to achieve a better optimized output matching network. The designed low-noise amplifier simulated a gain of 20.68 dB and 19.94 dB from 4.4 to 5.0 GHz, with noise figures of 1.57 dB and 1.73 dB, respectively. The input and output matching networks were also integrated, and the power consumption was designed to be 9.95 mA at a supply voltage of 1.2 V.


Asunto(s)
Amplificadores Electrónicos , Tecnología , Retroalimentación , Ruido , Impedancia Eléctrica
11.
Entropy (Basel) ; 25(9)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37761577

RESUMEN

The engineering challenge of rolling bearing condition monitoring has led to a large number of method developments over the past few years. Most commonly, vibration measurement data are used for fault diagnosis using machine learning algorithms. In current research, purely data-driven deep learning methods are becoming increasingly popular, aiming for accurate predictions of bearing faults without requiring bearing-specific domain knowledge. Opposing this trend in popularity, the present paper takes a more traditional approach, incorporating domain knowledge by evaluating a variety of feature engineering methods in combination with a random forest classifier. For a comprehensive feature engineering study, a total of 42 mathematical feature formulas are combined with the preprocessing methods of envelope analysis, empirical mode decomposition, wavelet transforms, and frequency band separations. While each single processing method and feature formula is known from the literature, the presented paper contributes to the body of knowledge by investigating novel series connections of processing methods and feature formulas. Using the CWRU bearing fault data for performance evaluation, feature calculation based on the processing method of frequency band separation leads to particularly high prediction accuracies, while at the same time being very efficient in terms of low computational effort. Additionally, in comparison with deep learning approaches, the proposed feature engineering method provides excellent accuracies and enables explainability.

12.
Neuroimage ; 258: 119372, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35700946

RESUMEN

The ability to mentally wander away from the external environment is a remarkable feature of the human mind. Although recent years have witnessed a surge of interest in examining mind wandering using EEG, there is no comprehensive review that summarizes and accounts for the variable findings. Accordingly, we conducted a systematic review that synthesizes evidence from EEG studies that examined the electrophysiological measures of mind wandering. Our search yielded 42 studies that met eligibility criteria. The reviewed literature converges on a reduction in the amplitude of canonical ERP components (i.e., P1, N1 and P3) as the most reliable markers of mind wandering. Spectral findings were less robust, but point towards greater activity in lower frequency bands, (i.e., delta, theta, and alpha), as well as a decrease in beta band activity, during mind wandering compared to on-task states. The variability in these findings appears to be modulated by the task context. To integrate these findings, we propose an electrophysiological account of mind wandering that explains how the brain supports this inner experience. Conclusions drawn from this work will inform future endeavours in basic science to map out electrophysiological patterns underlying mind wandering and in translational science using EEG to predict the occurrence of this phenomenon.


Asunto(s)
Atención , Encéfalo , Atención/fisiología , Encéfalo/fisiología , Humanos
13.
BMC Psychiatry ; 22(1): 758, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463186

RESUMEN

BACKGROUND: Sleep spindles have been involved in sleep stabilization and sleep-related memory mechanisms and their deficit emerged as possible biomarker in schizophrenia. However, whether this sleep phenotype is also present in other disorders that share psychotic symptoms remains unclear. To address this gap, we assessed sleep spindles in participants of a prospective population-based cohort who underwent psychiatric assessment (CoLaus|PsyCoLaus) and polysomnographic recording (HypnoLaus). METHODS: Sleep was recorded using ambulatory polysomnography in participants (N = 1037) to the PsyCoLaus study. Sleep spindle parameters were measured in people with a lifelong diagnosis of schizophrenia (SZ), schizoaffective depressive (SAD), schizoaffective manic (SAM), bipolar disorder type I (BP-I) and type II (BP-II). The associations between lifetime diagnostic status (independent variables, SZ, SAD, SAM, BPD-I, BPD-II, controls) and spindle parameters (dependent variables) including density, duration, frequency and maximum amplitude, for all (slow and fast), slow- and fast-spindle were assessed using linear mixed models. Pairwise comparisons of the different spindle parameters between the SZ group and each of the other psychiatric groups was performed using a contrast testing framework from our multiple linear mixed models. RESULTS: Our results showed a deficit in the density and duration of sleep spindles in people with SZ. They also indicated that participants with a diagnosis of SAD, SAM, BP-I and BP-II exhibited different sleep spindle phenotypes. Interestingly, spindle densities and frequencies were different in people with a history of manic symptoms (SAM, BP-I, and BP-II) from those without (SZ, SAD). CONCLUSIONS: Although carried out on a very small number of participants due to the low prevalence of these disorders in general population, this pilot study brought new elements that argued in favor of a deficit of sleep spindles density and duration in people with schizophrenia. In addition, while we could expect a gradual change in intensity of the same sleep spindle parameters through psychotic diagnoses, our results seem to indicate a more complex situation in which the frequency of sleep spindles might be more impacted by diagnoses including a history of mania or hypomania. Further studies with a larger number of participants are required to confirm these effects.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Humanos , Trastorno Bipolar/complicaciones , Trastorno Bipolar/diagnóstico , Esquizofrenia/complicaciones , Esquizofrenia/diagnóstico , Proyectos Piloto , Estudios Prospectivos , Trastornos Psicóticos/complicaciones , Trastornos Psicóticos/diagnóstico , Sueño
14.
Sensors (Basel) ; 22(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433405

RESUMEN

Olfactory-induced emotion plays an important role in communication, decision-making, multimedia, and disorder treatment. Using electroencephalogram (EEG) technology, this paper focuses on (1) exploring the possibility of recognizing pleasantness induced by different concentrations of odors, (2) finding the EEG rhythm wave that is most suitable for the recognition of different odor concentrations, (3) analyzing recognition accuracies with concentration changes, and (4) selecting a suitable classifier for this classification task. To explore these issues, first, emotions induced by five different concentrations of rose or rotten odors are divided into five kinds of pleasantness by averaging subjective evaluation scores. Then, the power spectral density features of EEG signals and support vector machine (SVM) are used for classification tasks. Classification results on the EEG signals collected from 13 participants show that for pleasantness recognition induced by pleasant or disgusting odor concentrations, considerable average classification accuracies of 93.5% or 92.2% are obtained, respectively. The results indicate that (1) using EEG technology, pleasantness recognition induced by different odor concentrations is possible; (2) gamma frequency band outperformed other EEG rhythm-based frequency bands in terms of classification accuracy, and as the maximum frequency of the EEG spectrum increases, the pleasantness classification accuracy gradually increases; (3) for both rose and rotten odors, the highest concentration obtains the best classification accuracy, followed by the lowest concentration.


Asunto(s)
Electroencefalografía , Odorantes , Humanos , Electroencefalografía/métodos , Emociones , Olfato , Máquina de Vectores de Soporte
15.
Sensors (Basel) ; 22(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684700

RESUMEN

Nowadays, more people tend to go to bed late and spend their sleep time with various electronic devices. At the same time, the BCI (brain−computer interface) rehabilitation equipment uses a visual display, thus it is necessary to evaluate the problem of visual fatigue to avoid the impact on the training effect. Therefore, it is very important to understand the impact of using electronic devices in a dark environment at night on human visual fatigue. This paper uses Matlab to write different color paradigm stimulations, uses a 4K display with an adjustable screen brightness to jointly design the experiment, uses eye tracker and g.tec Electroencephalogram (EEG) equipment to collect the signal, and then carries out data processing and analysis, finally obtaining the influence of the combination of different colors and different screen brightness on human visual fatigue in a dark environment. In this study, subjects were asked to evaluate their subjective (Likert scale) perception, and objective signals (pupil diameter, θ + α frequency band data) were collected in a dark environment (<3 lx). The Likert scale showed that a low screen brightness in the dark environment could reduce the visual fatigue of the subjects, and participants preferred blue to red. The pupil data revealed that visual perception sensitivity was more vulnerable to stimulation at a medium and high screen brightness, which is easier to deepen visual fatigue. EEG frequency band data concluded that there was no significant difference between paradigm colors and screen brightness on visual fatigue. On this basis, this paper puts forward a new index­the visual anti-fatigue index, which provides a valuable reference for the optimization of the indoor living environment, the improvement of satisfaction with the use of electronic equipment and BCI rehabilitation equipment, and the protection of human eyes.


Asunto(s)
Astenopía , Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Pupila/fisiología , Percepción Visual
16.
Sensors (Basel) ; 22(13)2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35808189

RESUMEN

The accurate estimation of axial stresses is a major problem for high-strength bolted connections that needs to be overcome to improve the assembly quality and safety of aviation structures. However, the conventional acoustoelastic effect based on velocity-stress dependence is very weak for short bolts, which leads to large estimation errors. In this article, the effect of axial stress on ultrasonic scattering attenuation is investigated by calculating the change in the energy attenuation coefficient of ultrasonic echoes after applying axial preload. Based on this effect, a stress-dependent attenuation estimation model is developed to measure the bolt axial stress. In addition, the spectrum of the first and second round-trip echoes is divided into several frequency bands to calculate the energy attenuation coefficients, which are used to select the frequency band sensitive to the axial stress changes. Finally, the estimation model between axial stress and energy attenuation coefficients in the sensitive frequency band is established under 20 steps of axial preloads. The experimental results show that the energy attenuation coefficient in the sensitive band corresponds well with axial stress. The average relative error of the predicted axial stress is 6.28%, which is better than that of the conventional acoustoelastic effect method. Therefore, the proposed approach can be used as an effective method to measure the axial stress of short bolts in the assembly of high-strength connections.

17.
Sensors (Basel) ; 22(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36016032

RESUMEN

This proof-of-concept study explores the potential of developing objective pain identification based on the analysis of electroencephalography (EEG) signals. Data were collected from participants living with chronic fibromyalgia pain (n = 4) and from healthy volunteers (n = 7) submitted to experimental pain by the application of capsaicin cream (1%) on the right upper trapezius. This data collection was conducted in two parts: (1) baseline measures including pain intensity and EEG signals, with the participant at rest; (2) active measures collected under the execution of a visuo-motor task, including EEG signals and the task performance index. The main measure for the objective identification of the presence of pain was the coefficient of variation of the upper envelope (CVUE) of the EEG signal from left fronto-central (FC5) and left temporal (T7) electrodes, in alpha (8-12 Hz), beta (12-30 Hz) and gamma (30-43 Hz) frequency bands. The task performance index was also calculated. CVUE (%) was compared between groups: those with chronic fibromyalgia pain, healthy volunteers with "No pain" and healthy volunteers with experimentally-induced pain. The identification of the presence of pain was determined by an increased CVUE in beta (CVUEß) from the EEG signals captured at the left FC5 electrode. More specifically, CVUEß increased up to 20% in the pain condition at rest. In addition, no correlation was found between CVUEß and pain intensity or the task performance index. These results support the objective identification of the presence of pain based on the quantification of the coefficient of variation of the upper envelope of the EEG signal.


Asunto(s)
Fibromialgia , Electrodos , Electroencefalografía/métodos , Fibromialgia/diagnóstico , Humanos , Dolor/diagnóstico , Análisis y Desempeño de Tareas
18.
Sensors (Basel) ; 22(19)2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36236368

RESUMEN

Epilepsy is a chronic neurological disorder caused by abnormal neuronal activity that is diagnosed visually by analyzing electroencephalography (EEG) signals. BACKGROUND: Surgical operations are the only option for epilepsy treatment when patients are refractory to treatment, which highlights the role of classifying focal and generalized epilepsy syndrome. Therefore, developing a model to be used for diagnosing focal and generalized epilepsy automatically is important. METHODS: A classification model based on longitudinal bipolar montage (LB), discrete wavelet transform (DWT), feature extraction techniques, and statistical analysis in feature selection for RNN combined with long short-term memory (LSTM) is proposed in this work for identifying epilepsy. Initially, normal and epileptic LB channels were decomposed into three levels, and 15 various features were extracted. The selected features were extracted from each segment of the signals and fed into LSTM for the classification approach. RESULTS: The proposed algorithm achieved a 96.1% accuracy, a 96.8% sensitivity, and a 97.4% specificity in distinguishing normal subjects from subjects with epilepsy. This optimal model was used to analyze the channels of subjects with focal and generalized epilepsy for diagnosing purposes, relying on statistical parameters. CONCLUSIONS: The proposed approach is promising, as it can be used to detect epilepsy with satisfactory classification performance and diagnose focal and generalized epilepsy.


Asunto(s)
Epilepsia Generalizada , Epilepsia , Algoritmos , Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia Generalizada/diagnóstico , Humanos , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
19.
Sensors (Basel) ; 22(15)2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35957309

RESUMEN

To efficiently utilize nonexclusive underwater acoustic frequencies, we propose an Underwater Cooperative Spectrum Sharing (UCSS) protocol for a centralized underwater cognitive acoustic network that mainly consists of two parts. In the first part, to check the random occurrence of interferers periodically, the time domain is divided into frames that consist of a sensing and a non-sensing sub-frame. Then, we set the ratio of the two sub-frames to enhance the sensing rate via simulations. As a result, there exists the upper limit of the ratio, which can be used for determining the proportion of the sensing time within a frame. The second part is to design two heuristic resource allocation (RA) algorithms. One is a multiround RA (MRRA), where a central entity allocates a data channel (i.e., resource) to a CU each round so that multiple rounds are executed until no CUs need to be allocated or there is a lack of data channels. The other is a single-round RA (SRRA), where a CU is allocated to as many data channels as its QoS within a round. We also specify four rules to determine the allocation order of the CUs: random, fixed, high-QoS-based, and low-channel allocation-rate-based. In this study, we investigate the best RA allocation order pair supporting the highest channel allocation rate and fairness index via extensive simulations. It is shown that the MRRA outperformed the SRRA, regardless of allocation orders at any conditions, and the random and low-channel allocation-rate-based allocation orders with MRRA supported the best performance. In particular, even without the optimization process, the MRRA guarantees more than 95% fairness.

20.
Neuroimage ; 226: 117557, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189934

RESUMEN

Cognitive planning, the ability to develop a sequenced plan to achieve a goal, plays a crucial role in human goal-directed behavior. However, the specific role of frontal structures in planning is unclear. We used a novel and ecological task, that allowed us to separate the planning period from the execution period. The spatio-temporal dynamics of EEG recordings showed that planning induced a progressive and sustained increase of frontal-midline theta activity (FMθ) over time. Source analyses indicated that this activity was generated within the prefrontal cortex. Theta activity from the right mid-Cingulate Cortex (MCC) and the left Anterior Cingulate Cortex (ACC) were correlated with an increase in the time needed for elaborating plans. On the other hand, left Frontopolar cortex (FP) theta activity exhibited a negative correlation with the time required for executing a plan. Since reaction times of planning execution correlated with correct responses, left FP theta activity might be associated with efficiency and accuracy in making a plan. Associations between theta activity from the right MCC and the left ACC with reaction times of the planning period may reflect high cognitive demand of the task, due to the engagement of attentional control and conflict monitoring implementation. In turn, the specific association between left FP theta activity and planning performance may reflect the participation of this brain region in successfully self-generated plans.


Asunto(s)
Cognición/fisiología , Lóbulo Frontal/fisiología , Giro del Cíngulo/fisiología , Ritmo Teta/fisiología , Pensamiento/fisiología , Adulto , Atención , Electroencefalografía , Femenino , Humanos , Masculino , Tiempo de Reacción/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA