Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 21, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414044

RESUMEN

BACKGROUND: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis. RESULTS: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation. In total, we analyzed 67 SPINK1 coding SNVs, which account for 9.3% of the 720 possible coding SNVs. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through detailed comparison of FLGSA results and SpliceAI predictions, we inferred that the remaining 653 untested coding SNVs in the SPINK1 gene are unlikely to significantly affect splicing. Of the 12 splice-altering events, nine produced both normally spliced and aberrantly spliced transcripts, while the remaining three only generated aberrantly spliced transcripts. These splice-impacting SNVs were found solely in exons 1 and 2, notably at the first and/or last coding nucleotides of these exons. Among the 12 splice-altering events, 11 were missense variants (2.17% of 506 potential missense variants), and one was synonymous (0.61% of 164 potential synonymous variants). Notably, adjusting the SpliceAI cut-off to 0.30 instead of the conventional 0.20 would improve specificity without reducing sensitivity. CONCLUSIONS: By integrating FLGSA with SpliceAI, we have determined that less than 2% (1.67%) of all possible coding SNVs in SPINK1 significantly influence splicing outcomes. Our findings emphasize the critical importance of conducting splicing analysis within the broader genomic sequence context of the study gene and highlight the inherent uncertainties associated with intermediate SpliceAI scores (0.20 to 0.80). This study contributes to the field by being the first to prospectively interpret all potential coding SNVs in a disease-associated gene with a high degree of accuracy, representing a meaningful attempt at shifting from retrospective to prospective variant analysis in the era of exome and genome sequencing.


Asunto(s)
Empalme del ARN , Inhibidor de Tripsina Pancreática de Kazal , Humanos , Inhibidor de Tripsina Pancreática de Kazal/genética , Estudios Retrospectivos , Empalme del ARN/genética , Exones/genética , Secuencia de Bases , Empalme Alternativo/genética
2.
BMC Genomics ; 25(1): 601, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877407

RESUMEN

BACKGROUND: The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS: A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION: In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.


Asunto(s)
Paeonia , Semillas , Transcriptoma , Triglicéridos , Paeonia/genética , Paeonia/metabolismo , Paeonia/crecimiento & desarrollo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Triglicéridos/biosíntesis , Filogenia , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Diacilglicerol O-Acetiltransferasa/genética , Diacilglicerol O-Acetiltransferasa/metabolismo , Metabolismo de los Lípidos/genética
3.
BMC Genomics ; 25(1): 725, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060996

RESUMEN

BACKGROUND: Daphnia galeata is a suitable model organism for investigating predator-induced defense. Genes and pathways exhibiting differential expression between fish kairomone-treated and untreated groups in D. galeata have been identified. However, understanding of the significance of alternative splicing, a crucial process of the regulation of gene expression in eukaryotes, to this mechanism remains limited. This study measured life-history traits and conducted short-read RNA sequencing and long-read isoform sequencing of two Korean D. galeata genotypes (KB1 and KE2) to uncover the genetic mechanism underlying their phenotypic plasticity under predation stress. RESULTS: KB1 exhibited strategies to enhance fertility and decrease body length when exposed to fish kairomones, while KE2 deployed an adaptive strategy to increase body length. Full-length transcriptomes from KB1 and KE2 yielded 65,736 and 57,437 transcripts, respectively, of which 32 differentially expressed transcripts (DETs) were shared under predation stress across both genotypes. Prominent DETs common to both genotypes were related to energy metabolism and the immune system. Additionally, differential alternative splicing (DAS) events were detected in both genotypes in response to fish kairomones. DAS genes shared between both genotypes may indicate their significant role in the post-transcriptional stress response to fish predation. Calpain-3, involved in digestion and nutrient absorption, was identified as a DAS gene in both genotypes when exposed to fish kairomones. In addition, the gene encoding thymosin beta, which is related to growth, was found to be a statistically significant DAS only in KB1, while that encoding ultraspiracle protein, also associated with growth, was only identified in KE2. Moreover, transcripts encoding proteins such as EGF-like domain-containing protein, vitellogenin fused with superoxide dismutase, and others were identified overlapping between DAS events and DETs and potentially elucidating their association with the observed phenotypic variation in each genotype. CONCLUSIONS: Our findings highlight the crucial role of alternative splicing in modulating transcriptome landscape under predation stress in D. galeata, emphasizing the requirement for integrating gene expression and splicing analyses in evolutionary adaptation studies.


Asunto(s)
Empalme Alternativo , Daphnia , Genotipo , Animales , Daphnia/genética , Daphnia/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Adaptación Fisiológica/genética , Adaptación Fisiológica/efectos de los fármacos , Feromonas/farmacología , Peces/genética , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica
4.
BMC Genomics ; 25(1): 340, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575872

RESUMEN

BACKGROUND: The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS: A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS: miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Patos/genética , Patos/metabolismo , Perfilación de la Expresión Génica , Músculo Esquelético/metabolismo , ARN Mensajero/genética , Transcriptoma
5.
Plant Mol Biol ; 114(2): 31, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509284

RESUMEN

Genes with similar or related functions in chloroplasts are often arranged in close proximity, forming clusters on chromosomes. These clusters are transcribed coordinated to facilitate the expression of genes with specific function. Our previous study revealed a significant negative correlation between the chloroplast gene expression level of the rare medicinal fern Ophioglossum vulgatum and its evolutionary rates as well as selection pressure. Therefore, in this study, we employed a combination of SMRT and Illumina sequencing technology to analyze the full-length transcriptome sequencing of O. vulgatum for the first time. In particular, we experimentally identified gene clusters based on transcriptome data and investigated the effects of chloroplast gene clustering on expression and evolutionary patterns. The results revealed that the total sequenced data volume of the full-length transcriptome of O. vulgatum amounted to 71,950,652,163 bp, and 110 chloroplast genes received transcript coverage. Nine different types of gene clusters were experimentally identified in their transcripts. The chloroplast cluster genes may cause a decrease in non-synonymous substitution rate and selection pressure, as well as a reduction in transversion rate, transition rate, and their ratio. While expression levels of chloroplast cluster genes in leaf, sporangium, and stem would be relatively elevated. The Mann-Whitney U test indicated statistically significant in the selection pressure, sporangia and leaves groups (P < 0.05). We have contributed novel full-length transcriptome data resources for ferns, presenting new evidence on the effects of chloroplast gene clustering on expression land evolutionary patterns, and offering new theoretical support for transgenic research through gene clustering.


Asunto(s)
Helechos , Genes del Cloroplasto , Genes del Cloroplasto/genética , Evolución Biológica , Perfilación de la Expresión Génica , Transcriptoma , Helechos/genética
6.
Immunogenetics ; 76(2): 109-121, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38400869

RESUMEN

In the past, identification of HLA alleles was limited to sequencing the region of the gene coding for the peptide binding groove, resulting in a lack of sequence information in the HLA database, challenging HLA allele assignment software programs. We investigated full-length sequences of 19 HLA class I and 7 HLA class II alleles, and we extended another 47 HLA class I alleles with sequences of 5' and 3' UTR regions that were all not yet available in the IPD-IMGT/HLA database. We resolved 8638 unknown nucleotides in the coding sequence of HLA class I and 2139 of HLA class II. Furthermore, with full-length sequencing of the 26 alleles, more than 90 kb of sequence information was added to the non-coding sequences, whereas extension of the 47 alleles resulted in the addition of 5.5 kb unknown nucleotides to the 5' UTR and > 31.7 kb to the 3' UTR region. With this information, some interesting features were observed, like possible recombination events and lineage evolutionary origins. The continuing increase in the availability of full-length sequences in the HLA database will enable the identification of the evolutionary origin and will help the community to improve the alignment and assignment accuracy of HLA alleles.


Asunto(s)
Evolución Biológica , Nucleótidos , Alelos , Regiones no Traducidas 3'/genética , Membrana Celular , Nucleótidos/genética
7.
BMC Plant Biol ; 24(1): 64, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262910

RESUMEN

BACKGROUND: Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS: The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS: This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.


Asunto(s)
Ascomicetos , Sesamum , Resistencia a la Enfermedad , RNA-Seq , Transcriptoma , Reguladores del Crecimiento de las Plantas
8.
BMC Plant Biol ; 24(1): 73, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273309

RESUMEN

BACKGROUND: Sphaeropteris brunoniana and Alsophila latebrosa are both old relict and rare tree ferns, which have experienced the constant changes of climate and environment. However, little is known about their high-quality genetic information and related research on environmental adaptation mechanisms of them. In this study, combined with PacBio and Illumina platforms, transcriptomic analysis was conducted on the roots, rachis, and pinna of S. brunoniana and A. latebrosa to identify genes and pathways involved in environmental adaptation. Additionally, based on the transcriptomic data of tree ferns, chloroplast genes were mined to analyze their gene expression levels and RNA editing events. RESULTS: In the study, we obtained 11,625, 14,391 and 10,099 unigenes of S. brunoniana root, rachis, and pinna, respectively. Similarly, a total of 13,028, 11,431 and 12,144 unigenes were obtained of A. latebrosa root, rachis, and pinna, respectively. According to the enrichment results of differentially expressed genes, a large number of differentially expressed genes were enriched in photosynthesis and secondary metabolic pathways of S. brunoniana and A. latebrosa. Based on gene annotation results and phenylpropanoid synthesis pathways, two lignin synthesis pathways (H-lignin and G-lignin) were characterized of S. brunoniana. Among secondary metabolic pathways of A. latebrosa, three types of WRKY transcription factors were identified. Additionally, based on transcriptome data obtained in this study, reported transcriptome data, and laboratory available transcriptome data, positive selection sites were identified from 18 chloroplast protein-coding genes of four tree ferns. Among them, RNA editing was found in positive selection sites of four tree ferns. RNA editing affected the protein secondary structure of the rbcL gene. Furthermore, the expression level of chloroplast genes indicated high expression of genes related to the chloroplast photosynthetic system in all four species. CONCLUSIONS: Overall, this work provides a comprehensive transcriptome resource of S. brunoniana and A. latebrosa, laying the foundation for future tree fern research.


Asunto(s)
Helechos , Helechos/genética , Transcriptoma , ARN del Cloroplasto , Metabolismo Secundario , Edición de ARN/genética , Lignina , Perfilación de la Expresión Génica , Cloroplastos/genética
9.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515036

RESUMEN

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Asunto(s)
Arachis , Ralstonia solanacearum , Arachis/genética , Arachis/microbiología , Transcriptoma , Ralstonia solanacearum/fisiología , Fitomejoramiento , Resistencia a la Enfermedad/genética , Glutatión/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
10.
New Phytol ; 241(6): 2606-2620, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38291701

RESUMEN

The advent of full-length transcriptome sequencing technologies has accelerated the discovery of novel splicing isoforms. However, existing alternative splicing (AS) tools are either tailored for short-read RNA-Seq data or designed for human and animal studies. The disparities in AS patterns between plants and animals still pose a challenge to the reliable identification and functional exploration of novel isoforms in plants. Here, we developed integrated full-length alternative splicing analysis (iFLAS), a plant-optimized AS toolkit that introduced a semi-supervised machine learning method known as positive-unlabeled (PU) learning to accurately identify novel isoforms. iFLAS also enables the investigation of AS functions from various perspectives, such as differential AS, poly(A) tail length, and allele-specific AS (ASAS) analyses. By applying iFLAS to three full-length transcriptome sequencing datasets, we systematically identified and functionally characterized maize (Zea mays) AS patterns. We found intron retention not only introduces premature termination codons, resulting in lower expression levels of isoforms, but may also regulate the length of 3'UTR and poly(A) tail, thereby affecting the functional differentiation of isoforms. Moreover, we observed distinct ASAS patterns in two genes within heterosis offspring, highlighting their potential value in breeding. These results underscore the broad applicability of iFLAS in plant full-length transcriptome-based AS research.


Asunto(s)
Empalme Alternativo , Transcriptoma , Humanos , Empalme Alternativo/genética , Transcriptoma/genética , Zea mays/genética , Perfilación de la Expresión Génica/métodos , Fitomejoramiento , Isoformas de Proteínas/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
11.
Fish Shellfish Immunol ; : 109823, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39122096

RESUMEN

The Asian seabass (Lates calcarifer) faces significant disease threats, which are exacerbated by intensive farming practices and environmental changes. Therefore, understanding its immune system is crucial. The current study presents a comprehensive analysis of immune-related genes in Asian seabass peripheral blood leukocytes (PBLs) using Iso-seq technology, identifying 16 key pathways associated with 7,857 immune-related genes, comprising 634 unique immune-related genes. The research marks the first comprehensive report on the entire immunoglobulin repertoire in Asian seabass, revealing specific characteristics of immunoglobulin heavy chain constant region transcripts, including IgM (Cµ, ighm), IgT (Cτ, ight), and IgD (Cδ, ighd). The study confirms the presence of membrane-bound form, ighmmb, ightmb, ighdmb of IgM, IgT and IgD and secreted form, ighmsc and ightsc of IgM and IgT, respectively, with similar structural patterns and conserved features in amino acids across immunoglobulin molecules, including cysteine residues crucial for structural integrity observed in other teleost species. In response to bacterial infections by Flavobacterium covae (formerly F. columnare genomovar II) and Streptococcus iniae, both secreted and membrane-bound forms of IgM (ighmmb and ighmsc) and IgT (ightmb and ightsc) show significant expression, indicating their roles in systemic and mucosal immunity. The expression of membrane-bound form IgD gene, ighdmb, predominantly exhibits targeted upregulation in PBLs, suggesting a regulatory role in B cell-mediated immunity. The findings underscore the dynamic and tissue-specific expression of immunoglobulin repertoires, ighmmb, ighmsc, ightmb, ightsc and ighdmb in Asian seabass, indicating a sophisticated immune response to bacterial pathogens. These findings have practical implications for fish aquaculture, and disease control strategies, serving as a valuable resource for advancing research in Asian seabass immunology.

12.
Bioorg Med Chem ; 111: 117868, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39137475

RESUMEN

Nonsense mutations in the coding region turn amino acid codons into termination codons, resulting in premature termination codons (PTCs). In the case of the in-frame PTC, if translation does not stop at the PTC but continues to the natural termination codon (NTC) with the insertion of an amino acid, known as readthrough, the full-length peptide is formed, albeit with a single amino acid mutation. We have previously developed the functionality-transfer oligonucleotide (FT-Probe), which forms a hybrid complex with RNA of a complementary sequence to transfer the functional group, resulting in modification of the 4-amino group of cytosine or the 6-amino group of adenine. In this study, the FT-Probe was used to chemically modify the adenosines of the PTC (UAA, UAG, and UGA) of mRNA, which were assayed for the readthrough in a reconstituted Escherichia coli translation system. The third adenosine-modified UAA produced three readthrough peptides incorporating tyrosine, glutamine and lysine at the UAA site. It should be noted that the additional modification with a cyclodextrin only induced glutamine incorporation. The adenosine modified UGA induced readthrough very efficiently with selective tryptophan incorporation. Readthrough of the modified UGA is caused by inhibition of the RF2 function. This study has demonstrated that the chemical modification of the adenosine 6-amino group of the PTC is a strategy for effective readthrough in a prokaryotic translation system.


Asunto(s)
Adenosina , Escherichia coli , Péptidos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Adenosina/química , Adenosina/análogos & derivados , Péptidos/química , Péptidos/farmacología , Codón sin Sentido , Codón de Terminación/genética , Biosíntesis de Proteínas/efectos de los fármacos
13.
Bull Entomol Res ; 114(2): 190-202, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328866

RESUMEN

Reticulitermes chinensis Snyder is an important pest in forestry and construction and is widely distributed in China. We found that Serratia marcescens Bizio strain SM1 has insecticidal activity to R. chinensis, but the pathogenic mechanism of SM1 to R. chinensis is not clear. Therefore, full-length transcriptome sequencing was performed on R. chinensis infected with SM1 and the control group. A total of 230 differentially expressed genes were identified by comparing SM1 infection group and the control group, among which 103 were downregulated and 127 were upregulated. We found downregulated genes in nine metabolic pathway categories, among which carbohydrate metabolism had the most downregulated genes, followed by energy metabolism and amino acid metabolism. We also found that some downregulated genes were related to pattern recognition receptors, cellular immunity, and humoral immunity, indicating that R. chinensis immunity was negatively affected by SM1 infection. In addition, some genes in signal transduction and genetic information processing pathways were downregulated. In this study, high-throughput full-length transcriptome analysis was used to analyse the pathogenic mechanism of SM1 to R. chinensis. The results of this study provide useful information for exploring the relationship between SM1 and R. chinensis, and provide theoretical support for the future application of SM1 and the prevention and treatment of R. chinensis.


Asunto(s)
Serratia marcescens , Transcriptoma , Serratia marcescens/genética , Animales , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/genética , Mariposas Nocturnas/inmunología , Perfilación de la Expresión Génica
14.
Skeletal Radiol ; 53(8): 1465-1471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38443696

RESUMEN

PURPOSE: We identified limb misalignment by applying personalized axial force while the limb was in a supine position to mimic a standing posture. This study aimed to confirm the accuracy of evaluating lower limb alignment using supine weight-bearing CT scanograms. METHODS: We prospectively compared measurements of the weight-bearing line ratio (WBL), hip-knee-ankle (HKA) angle, and joint convergence angle (JLCA) in 46 sets of supine weight-bearing CT scanograms with those obtained from full-length standing anteroposterior lower extremity radiographs. We achieved the weight-bearing CT scanograms by applying six different levels of axial force: zero, 1/5 of body weight, 2/5 of body weight, 3/5 of body weight, 4/5 of body weight, and full body weight. We assessed the impact of age, body mass index, HKA, and JLCA on the observed mechanical axis deviation differences between the two methods. RESULT: The average absolute difference between standing radiographs and supine CT scanograms was 4.32% for the WBL ratio (p < 0.05), 1.25° for HKA (p < 0.05), and 0.46 for JLCA (p < 0.05). The mean absolute difference was minimal when applying full body weight axial pressure during CT scanograms (p > 0.05). Age, body mass index, HKA, and JLCA had no effect on the deviation in the mechanical axis measurements obtained through supine weight-bearing CT scanograms with full body weight. CONCLUSION: No significant differences were found in assessing lower limb alignment between standing radiographs and supine weight-bearing CT scanograms with full body weight. Weight-bearing CT scanograms prove to be a valuable method for assessing lower limb alignment while in a supine position.


Asunto(s)
Extremidad Inferior , Tomografía Computarizada por Rayos X , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Extremidad Inferior/diagnóstico por imagen , Estudios Prospectivos , Reproducibilidad de los Resultados , Posición de Pie , Posición Supina , Tomografía Computarizada por Rayos X/métodos , Soporte de Peso
15.
Chem Eng J ; 4912024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38882000

RESUMEN

Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.

16.
Ecotoxicol Environ Saf ; 271: 115866, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199221

RESUMEN

Triclosan (TCS), a broad-spectrum, lipophilic, and antibacterial agent, has been commonly used in cosmetics, medical devices, and household products. The toxicity of TCS has recently become a research hotspot. Emerging evidence has shown that TCS can easily migrate to humans and animals and cause adverse effects on various target organs. However, the effects of TCS exposure on nephrotoxicity and underlying mechanisms remain unknown. The aim of the present study was to explore TCS-induced nephrotoxicity. Therefore, we establish a mouse model based on adult male mice to explore the effects of 10-week TCS exposure (50 mg/kg) on kidney. After mice were sacrificed, their blood, feces, and renal tissues were harvested for further analysis. We found that TCS treatment dramatically caused kidney structural damage, and increased blood urea nitrogen (BUN) and creatinine (Cr) expression levels, which indicated renal dysfunction. In addition, TCS exposure increased the malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and total cholesterol (TCHO) expression levels, which indicated oxidative stress and lipid metabolism changes. The RNA sequencing (RNA-seq) of kidney tissue identified 221 differentially expressed genes (DEGs) enriched in 50 pathways, including drug metabolism-other enzymes, oxidative phosphorylation, glutathione metabolism, and inflammatory mediator regulation of TRP channels signaling pathways. The full-length 16S rRNA gene sequencing results showed that TCS exposure altered the community of gut microbiota, which was closely related to renal function damage. The above findings provide new insights into the mechanism of TCS-induced nephrotoxicity.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Renales , Triclosán , Humanos , Adulto , Masculino , Ratones , Animales , Triclosán/toxicidad , Disbiosis/inducido químicamente , ARN Ribosómico 16S/genética , Riñón
17.
Clin Oral Investig ; 28(2): 143, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349450

RESUMEN

OBJECTIVE: The study aims to determine the effects of Nd:YAG laser-assisted with subgingival scaling and root planing (SRP) treatment on glucose control and the dynamic changes of subgingival microbiome in periodontitis with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: Twenty-two patients were split into Nd:YAG group (n = 11) and SRP group (n = 11). Patients in the Nd:YAG group received SRP and auxiliary Nd:YAG laser treatment; patients in the SRP group received SRP treatment only. Periodontal tissue inflammation and glycemic control were assessed and analyzed during the treatment period and the changes of subgingival microbiome were analyzed by full-length 16S rRNA sequencing. RESULTS: After 3 months of treatment, PD and CAL values improved significantly in the Nd:YAG group compared to the SRP group. BOP in both groups improved significantly after treatment. FPG levels in the Nd:YAG group were significantly reduced after treatment. Porphyromonas and Porphyromonadaceae were enriched in the Nd:YAG group at baseline, and Fusobacteriota, Fusobacteriia, Fusobacteriales, Leptotrichiaceae, and Leptotrichia were enriched after treatment. CONCLUSION: Nd:YAG laser-assisted SRP therapy has additional benefits in improving periodontal tissue inflammation and blood glucose control in periodontitis patients with T2DM compared with SRP therapy alone and there was a trend towards a decrease in disease-associated taxa and an increase in health-associated taxa following auxiliary Nd:YAG laser treatment. CLINICAL RELEVANCE: The effects of Nd:YAG laser-assisted SRP treatment on inflammation, glucose control, and subgingival microbiome in periodontitis patients with T2DM were elucidated, and new ideas for the treatment of T2DM periodontitis were provided.


Asunto(s)
Diabetes Mellitus Tipo 2 , Terapia por Láser , Láseres de Estado Sólido , Periodontitis , Humanos , Animales , Aplanamiento de la Raíz , Glucemia , Diabetes Mellitus Tipo 2/complicaciones , ARN Ribosómico 16S , Raspado Dental , Periodontitis/complicaciones , Periodontitis/terapia , Inflamación
18.
Int J Mol Sci ; 25(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38892283

RESUMEN

Skeletal muscle grows in response to a combination of genetic and environmental factors, and its growth and development influence the quality of pork. Elucidating the molecular mechanisms regulating the growth and development of skeletal muscle is of great significance to both animal husbandry and farm management. The Jiangquan black pig is an excellent pig breed based on the original Yimeng black pig, importing the genes of the Duroc pig for meat traits, and cultivated through years of scientific selection and breeding. In this study, full-length transcriptome sequencing was performed on three growth stages of Jiangquan black pigs, aiming to study the developmental changes in Jiangquan black pigs at different developmental stages at the molecular level and to screen the key genes affecting the growth of skeletal muscle in Jiangquan black pigs. We performed an enrichment analysis of genes showing differential expression and constructed a protein-protein interaction network with the aim of identifying core genes involved in the development of Jiangquan black pigs. Notably, genes such as TNNI2, TMOD4, PLDIM3, MYOZ1, and MYH1 may be potential regulators of muscle development in Jiangquan black pigs. Our results contribute to the understanding of the molecular mechanisms of skeletal muscle development in this pig breed, which will facilitate molecular breeding efforts and the development of pig breeds to meet the needs of the livestock industry.


Asunto(s)
Perfilación de la Expresión Génica , Músculo Esquelético , Transcriptoma , Animales , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Porcinos/genética , Porcinos/crecimiento & desarrollo , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Desarrollo de Músculos/genética , Cruzamiento , Mapas de Interacción de Proteínas/genética
19.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928210

RESUMEN

Paraformaldehyde (PFA) fixation is the preferred method for preserving tissue architecture for anatomical and pathological observations. Meanwhile, PFA reacts with the amine groups of biomolecules to form chemical cross-linking, which preserves RNA within the tissue. This has great prospects for RNA sequencing to characterize the molecular underpinnings after anatomical and pathological observations. However, RNA is inaccessible due to cross-linked adducts forming between RNA and other biomolecules in prolonged PFA-fixed tissue. It is also difficult to perform reverse transcription and PCR, resulting in low sequencing sensitivity and reduced reproducibility. Here, we developed a method to perform RNA sequencing in PFA-fixed tissue, which is easy to use, cost-effective, and allows efficient sample multiplexing. We employ cross-link reversal to recover RNA and library construction using random primers without artificial fragmentation. The yield and quality of recovered RNA significantly increased through our method, and sequencing quality metrics and detected genes did not show any major differences compared with matched fresh samples. Moreover, we applied our method for gene expression analysis in different regions of the mouse brain and identified unique gene expression profiles with varied functional implications. We also find significant dysregulation of genes involved in Alzheimer's disease (AD) pathogenesis within the medial septum (MS)/vertical diagonal band of Broca (VDB) of the 5×FAD mouse brain. Our method can thus increase the performance of high-throughput RNA sequencing with PFA-fixed samples and allows longitudinal studies of small tissue regions isolated by their in situ context.


Asunto(s)
Encéfalo , Formaldehído , Análisis de Secuencia de ARN , Fijación del Tejido , Formaldehído/química , Animales , Ratones , Encéfalo/metabolismo , Fijación del Tejido/métodos , Análisis de Secuencia de ARN/métodos , Enfermedad de Alzheimer/genética , Polímeros/química , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN/genética
20.
Water Sci Technol ; 90(1): 1-17, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007303

RESUMEN

Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.


Asunto(s)
Bacterias , Incrustaciones Biológicas , Halogenación , Plantas de Energía Nuclear , ARN Ribosómico 16S , Purificación del Agua , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Purificación del Agua/métodos , Agua de Mar/microbiología , Cloro/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA