Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant J ; 108(2): 330-346, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34273211

RESUMEN

Plant aquaporins are a recently noted biological resource with a great potential to improve crop growth and defense traits. Here, we report the functional modulation of the rice (Oryza sativa) aquaporin OsPIP1;3 to enhance rice photosynthesis and grain production and to control bacterial blight and leaf streak, the most devastating worldwide bacterial diseases in the crop. We characterize OsPIP1;3 as a physiologically relevant CO2 -transporting facilitator, which supports 30% of rice photosynthesis on average. This role is nullified by interaction of OsPIP1;3 with the bacterial protein Hpa1, an essential component of the Type III translocon that supports translocation of the bacterial Type III effectors PthXo1 and TALi into rice cells to induce leaf blight and streak, respectively. Hpa1 binding shifts OsPIP1;3 from CO2 transport to effector translocation, aggravates bacterial virulence, and blocks rice photosynthesis. On the contrary, the external application of isolated Hpa1 to rice plants effectively prevents OsPIP1;3 from interaction with Hpa1 secreted by the bacteria that are infecting the plants. Blockage of the OsPIP1;3-Hpa1 interaction reverts OsPIP1;3 from effector translocation to CO2 transport, abrogates bacterial virulence, and meanwhile induces defense responses in rice. These beneficial effects can combine to enhance photosynthesis by 29-30%, reduce bacterial disease by 58-75%, and increase grain yield by 11-34% in different rice varieties investigated in small-scale field trials conducted during the past years. Our results suggest that crop productivity and immunity can be coordinated by modulating the physiological and pathological functions of a single aquaporin to break the growth-defense tradeoff barrier.


Asunto(s)
Oryza/fisiología , Fotosíntesis/fisiología , Proteínas de Plantas/metabolismo , Xanthomonas/patogenicidad , Proteínas Bacterianas/metabolismo , Transporte Biológico , Dióxido de Carbono/metabolismo , China , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/fisiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Virulencia , Xanthomonas/metabolismo
2.
Int J Mol Sci ; 20(1)2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609659

RESUMEN

In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone.


Asunto(s)
Respuesta al Choque Térmico , Proteínas de Saccharomyces cerevisiae/metabolismo , Termotolerancia , Proteínas de Unión al GTP rab/metabolismo , Mutación Missense , Fenilbutiratos/farmacología , Multimerización de Proteína , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Unión al GTP rab/genética
3.
Biotechnol Bioeng ; 111(10): 1920-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24771278

RESUMEN

OPHC2 is a thermostable organophosphate (OP) hydrolase in the ß-lactamase superfamily. OPs are highly toxic synthetic chemicals with no natural analogs. How did OPHC2 acquire phosphotriesterase (PTE) activity remained unclear. In this study, an OPHC2 analogue, PoOPH was discovered from Pseudomonas oleovorans exhibiting high lactonase and esterase activities and latent PTE activity. Sequence analysis revealed conserved His250 and Ile263 and site-directed mutagenesis at these crucial residues enhanced PTE activity. The best variant PoOPHM2 carrying H250I/I263W mutations displayed 6,962- and 106-fold improvements in catalytic efficiency for methyl-parathion and ethyl-paraoxon degradation, whereas the original lactonase and esterase activities decreased dramatically. A 1.4 × 10(7) -fold of specificity inversion was achieved by only two residue substitutions. Significantly, thermostability of the variants was not compromised. Crystal structure of PoOPHM2 was determined at 2.25 Å resolution and docking studies suggested that the two residues in the binding pocket determine substrate recognition. Lastly, new organophosphorus hydrolases (OPHs) were discovered using simple double mutations. Among them, PpOPHM2 from Pseudomonas putida emerged as a new promising OPH with very high activity (41.0 U mg(-1) ) toward methyl-parathion. Our results offer a first scrutiny to PTE activity evolution of OPHs in ß-lactamase superfamily and provide efficient and robust enzymes for OP detoxification.


Asunto(s)
Arildialquilfosfatasa/química , Hidrolasas de Triéster Fosfórico/química , Pseudomonas oleovorans/enzimología , beta-Lactamasas/química , Secuencia de Aminoácidos , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Hidrolasas de Triéster Fosfórico/genética , Hidrolasas de Triéster Fosfórico/metabolismo , Conformación Proteica , Estabilidad Proteica , Pseudomonas oleovorans/química , Pseudomonas oleovorans/genética , Alineación de Secuencia , Especificidad por Sustrato , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
4.
Eur J Med Chem ; 211: 113013, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33272782

RESUMEN

The retinoic acid receptor-related orphan receptor γt (RORγt) is an important nuclear receptor that regulates the differentiation of Th17 cells and production of interleukin 17(IL-17). RORγt agonists increase basal activity of RORγt and could provide a potential approach to cancer immunotherapy. Herein, hit compound 1 was identified as a weak RORγt agonist during in-house library screening. Changes in LHS core of 1 led to the identification of tetrahydroquinoline compound 6 as a partial RORγt agonist (max. act. = 39.3%). Detailed structure-activity relationship on substituent of the LHS core, amide linker and RHS arylsulfonyl moiety was explored and a novel series of tetrahydroquinolines and benzomorpholines was discovered as potent RORγt agonists. Tetrahydroquinoline compound 8g (EC50 = 8.9 ± 0.4 nM, max. act. = 104.5%) and benzomorpholine compound 9g (EC50 = 7.5 ± 0.6 nM, max. act. = 105.8%) were representative compounds with high RORγt agonistic activity in dual FRET assay, and they showed good activity in cell-based Gal4 reporter gene assay and Th17 cell differentiation assay (104.5% activation at 300 nM of 8g; 59.4% activation at 300 nM of 9g). The binding modes of 8g and 9g as well as the two RORγt inverse agonists accidentally discovered were also discussed.


Asunto(s)
Descubrimiento de Drogas , Morfolinas/farmacología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/agonistas , Quinolinas/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Simulación del Acoplamiento Molecular , Estructura Molecular , Morfolinas/síntesis química , Morfolinas/química , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad , Células Th17
5.
J Genet Genomics ; 47(9): 497-512, 2020 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-33339765

RESUMEN

Hepatocellular carcinoma (HCC) is the major form of primary liver cancer and one of the most prevalent and life-threatening malignancies globally. One of the hallmarks in HCC is the sustained cell survival and proliferative signals, which are determined by the balance between oncogenes and tumor suppressors. Transforming growth factor beta (TGF-ß) is an effective growth inhibitor of epithelial cells including hepatocytes, through induction of cell cycle arrest, apoptosis, cellular senescence, or autophagy. The antitumorigenic effects of TGF-ß are bypassed during liver tumorigenesis via multiple mechanisms. Furthermore, along with malignant progression, TGF-ß switches to promote cancer cell survival and proliferation. This dichotomous nature of TGF-ß is one of the barriers to therapeutic targeting in liver cancer. Thereafter, understanding the underlying molecular mechanisms is a prerequisite for discovering novel antitumor drugs that may specifically disable the growth-promoting branch of TGF-ß signaling or restore its tumor-suppressive arm. This review summarizes how TGF-ß inhibits or promotes liver cancer cell survival and proliferation, highlighting the functional switch mechanisms during the process.


Asunto(s)
Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Neoplasias Hepáticas/genética , Factor de Crecimiento Transformador beta1/genética , Apoptosis/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Supervivencia Celular/genética , Senescencia Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/patología
6.
Methods Mol Biol ; 1487: 409-432, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27924583

RESUMEN

The past three decades have witnessed an enormous progress in the elucidation of the ERK/MAPK signaling pathway and its involvement in various cellular processes. Because of its importance and complex wiring, the ERK pathway has been an intensive subject for mathematical modeling, which facilitates the unraveling of key dynamic properties and behaviors of the pathway. Recently, however, it became evident that the pathway does not act in isolation but closely interacts with many other pathways to coordinate various cellular outcomes under different pathophysiological contexts. This has led to an increasing number of integrated, large-scale models that link the ERK pathway to other functionally important pathways. In this chapter, we first discuss the essential steps in model development and notable models of the ERK pathway. We then use three examples of integrated, multipathway models to investigate how crosstalk of ERK signaling with other pathways regulates cell-fate decision-making in various physiological and disease contexts. Specifically, we focus on ERK interactions with the phosphoinositide-3 kinase (PI3K), c-Jun N-terminal kinase (JNK), and ß-adrenergic receptor (ß-AR) signaling pathways. We conclude that integrated modeling in combination with wet-lab experimentation have been and will be instrumental in gaining an in-depth understanding of ERK signaling in multiple biological contexts.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Modelos Biológicos , Transducción de Señal , Algoritmos , Animales , Apoptosis , Biomarcadores , Proliferación Celular , Supervivencia Celular , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Miocitos Cardíacos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas , Especies Reactivas de Oxígeno/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de los fármacos
7.
Oncotarget ; 10(17): 1604-1605, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30899430
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA