Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Mycoses ; 67(1): e13656, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37743555

RESUMEN

BACKGROUND: Systemic sporotrichosis occurs when organs, other than subcutaneous tissues and lymph nodes, are infected. Interestingly, systemic sporotrichosis in apparently immunocompetent individuals is increasing in Brazil, but data on clinical manifestations and risk factors are scarce. Most of the existing data on such condition relate to people living with HIV. We aimed to study the risk factors associated with systemic sporotrichosis among HIV-negative and HIV-positive patients. METHODS: We performed a retrospective cross-sectional study with 80 patients from Brazil, diagnosed between 2014 and 2021. The association between disease classification, clinical presentation and risk factors were analysed by logistic regression. RESULTS: Of the 80 patients, 29 (36.3%) presented with systemic sporotrichosis. All HIV-positive patients developed the systemic form, with increased mortality (p = .002). Alcohol ingestion (p = .009) and diabetes (p = .010) were associated with systemic disease. Alcohol ingestion seemed to favour pulmonary infection (p = .013) and, diabetes favoured osteoarticular (p = .009) and ocular involvement (p = .033). The occurrence of fever (p = .001) and weight loss (p = .006) were significantly associated with systemic sporotrichosis, while meningeal involvement (p = .001) increased mortality risk. Nine (11.3%) patients died from sporotrichosis. The presence of fungal structures in the mycological examination of the patients' lesions were associated with the systemic form (p = .017) and death (p = .002). CONCLUSION: Our study points to the factors that drive systemic sporotrichosis other than HIV, such as alcohol ingestion and diabetes. Considering the high number of patients presenting severe sporotrichosis, the recognising these factors may contribute to timely diagnosis and proper treatment.


Asunto(s)
Diabetes Mellitus , Infecciones por VIH , Sporothrix , Esporotricosis , Humanos , Esporotricosis/microbiología , Brasil/epidemiología , Estudios Transversales , Estudios Retrospectivos
2.
Cell Microbiol ; 23(6): e13330, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33745221

RESUMEN

Migration of Cryptococcus neoformans from the blood to the brain parenchyma is crucial to cause fatal meningoencephalitis. Although mechanisms involved in brain migration of C. neoformans have been widely studied in vitro, less is known about how the fungus crosses the blood-brain barrier (BBB) in vivo. This is in part because of the lack of an approach to quantitatively analyse the dynamics of fungal transmigration into the brain across the BBB in vivo. In this study, we report a novel approach to quantitatively analyse the interactions between C. neoformans and brain endothelial cells in a mouse model using flow cytometry. Using this system, we show that C. neoformans was internalised by brain endothelial cells in vivo and that mice infected with acapsular or heat-killed C. neoformans yeast cells displayed a lower frequency of brain endothelial cells containing the yeast cell compared to mice infected with wild-type or viable yeast cells, respectively. We further demonstrate that brain endothelial cells were invaded by serotype A strain (H99 strain) at a higher rate compared to serotype D strain (52D strain). Our experiments established that internalisation of C. neoformans by brain endothelial cells occurred in vivo and offered a powerful approach to quantitatively analyse fungal migration into the brain.


Asunto(s)
Barrera Hematoencefálica/microbiología , Encéfalo/microbiología , Cryptococcus neoformans/patogenicidad , Células Endoteliales/microbiología , Citometría de Flujo/métodos , Animales , Transporte Biológico , Encéfalo/citología , Criptococosis/microbiología , Modelos Animales de Enfermedad , Proteínas Fluorescentes Verdes , Meningoencefalitis/microbiología , Ratones , Ratones Endogámicos C57BL
3.
Cell Host Microbe ; 30(10): 1382-1400.e8, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099922

RESUMEN

Environmental pathogens move from ecological niches to mammalian hosts, requiring adaptation to dramatically different environments. Microbes that disseminate farther, including the fungal meningitis pathogen Cryptococcus neoformans, require additional adaptation to diverse tissues. We demonstrate that the formation of a small C. neoformans morphotype-called "seed" cells due to their colonizing ability-is critical for extrapulmonary organ entry. Seed cells exhibit changes in fungal cell size and surface expression that result in an enhanced macrophage update. Seed cell formation is triggered by environmental factors, including C. neoformans' environmental niche, and pigeon guano with phosphate plays a central role. Seed cells show the enhanced expression of phosphate acquisition genes, and mutants unable to acquire phosphate fail to adopt the seed cell morphotype. Additionally, phosphate can be released by tissue damage, potentially establishing a feed-forward loop of seed cell formation and dissemination. Thus, C. neoformans' size variation represent inducible morphotypes that change host interactions to facilitate microbe spread.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Adaptación Fisiológica , Animales , Columbidae , Criptococosis/microbiología , Cryptococcus neoformans/genética , Mamíferos , Fosfatos/metabolismo
4.
J Fungi (Basel) ; 8(10)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36294634

RESUMEN

Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood-brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.

5.
Virulence ; 9(1): 173-184, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28837391

RESUMEN

IgM and B-1 cell deficient mice exhibit early C. neoformans dissemination from lungs to brain, but a definitive role for B cells in conferring resistance to C. neoformans dissemination has not been established. To address this question, we developed an intranasal (i.n.) C. neoformans infection model in B and T cell deficient Rag1-/- mice and found they also exhibit earlier fungal dissemination and higher brain CFU than wild-type C57Bl/6 (wild-type) mice. To probe the effect of B cells on fungal dissemination, Rag1-/- mice were given splenic (intravenously) or peritoneal (intraperitoneally) B cells from wild-type mice and infected i.n. with C. neoformans 7 d later. Mice that received B cells had lung histopathology resembling wild type mice 14 d post-infection, and B-1, not B-2 or T cells in their lungs, and serum and lung IgM and IgG 21 d post-infection. Lung CFU were comparable in wild-type, Rag1-/-, and Rag1-/- mice that received B cells 21 d post-infection, but brain CFU were significantly lower in mice that received B cells than Rag1-/- mice that did not. To determine if natural antibody can promote immunity in our model, we measured alveolar macrophage phagocytosis of C. neoformans in Rag1-/- mice treated with naive wild-type IgM-sufficient or sIgM-/- IgM-deficient sera before infection. Compared to IgM-deficient sera, IgM-sufficient sera significantly increased phagocytosis. Our data establish B cells are able to reduce early C. neoformans dissemination in mice and suggest natural IgM may be a key mediator of early antifungal immunity in the lungs.


Asunto(s)
Linfocitos B/inmunología , Criptococosis/inmunología , Cryptococcus neoformans/crecimiento & desarrollo , Pulmón/microbiología , Traslado Adoptivo , Animales , Linfocitos B/trasplante , Encéfalo/microbiología , Recuento de Colonia Microbiana , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/inmunología , Citocinas/inmunología , Genes RAG-1/genética , Inmunoglobulina M/inmunología , Pulmón/inmunología , Pulmón/patología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA