Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(30): e2220761120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463213

RESUMEN

Crozier's paradox suggests that genetic kin recognition will not be evolutionarily stable. The problem is that more common tags (markers) are more likely to be recognized and helped. This causes common tags to increase in frequency, eliminating the genetic variability that is required for genetic kin recognition. Two potential solutions to this problem have been suggested: host-parasite coevolution and multiple social encounters. We show that the host-parasite coevolution hypothesis does not work as commonly assumed. Host-parasite coevolution only stabilizes kin recognition at a parasite resistance locus if parasites adapt rapidly to hosts and cause intermediate or high levels of damage (virulence). Additionally, when kin recognition is stabilized at a parasite resistance locus, this can have an additional cost of making hosts more susceptible to parasites. However, we show that if the genetic architecture is allowed to evolve, meaning natural selection can choose the recognition locus, genetic kin recognition is more likely to be stable. The reason for this is that host-parasite coevolution can maintain tag diversity at another (neutral) locus by genetic hitchhiking, allowing that other locus to be used for genetic kin recognition. These results suggest a way that host-parasite coevolution can resolve Crozier's paradox, without making hosts more susceptible to parasites. However, the opportunity for multiple social encounters may provide a more robust resolution of Crozier's paradox.


Asunto(s)
Parásitos , Animales , Parásitos/genética , Selección Genética , Adaptación Fisiológica , Virulencia , Interacciones Huésped-Parásitos/genética , Evolución Biológica
2.
J Evol Biol ; 26(10): 2081-94, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23980628

RESUMEN

Greenbeard genes identify copies of themselves in other individuals and cause their bearer to behave nepotistically towards those individuals. Bacterial toxins (bacteriocins) exemplify the greenbeard effect because producer strains carry closely linked genes for immunity, such that toxicity is limited to nonproducer strains. Bacteriocin producers can be maintained in a dynamic polymorphism, known as rock-paper-scissors (RPS) dynamics, with immune and susceptible strains. However, it is unclear whether and how such dynamics will be maintained in the presence of multiple toxin types (multiple beard 'colours'). Here, we analyse strain dynamics using models of recurrent patch colonization and population growth. We find that (i) polymorphism is promoted by a small number of founding lineages per patch, strong local resource competition and the occurrence of mutations; (ii) polymorphism can be static or dynamic, depending on the intensity of local interactions and the costs of toxins and immunity; (iii) the occurrence of multiple toxins can promote RPS dynamics; and (iv) strain diversity can be maintained even when toxins differ in toxicity or lineages can exhibit multitoxicity/multi-immunity. Overall, the factors that maintain simple RPS dynamics can also promote the coexistence of multiple toxin types (multiple beard colours), thus helping to explain the remarkable levels of bacteriocin diversity in nature. More generally, we contrast these results with the maintenance of marker diversity in genetic kin recognition.


Asunto(s)
Bacteriocinas/genética , Interacciones Microbianas/genética , Polimorfismo Genético , Antibiosis/genética , Bacteriocinas/química , Evolución Molecular , Marcadores Genéticos , Modelos Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA