Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Dis ; 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923976

RESUMEN

Wall-associated kinases (WAKs), a group of receptor-like kinases (RLKs), have been found to play important roles in defending against pathogens and in various developmental processes. However, the importance of this family in wheat remains largely unknown. Wheat powdery mildew is caused by Blumeria graminis f. sp. tritici (Bgt) which initiates infection on the cell surface and forms haustoria inside the cell, therefore, the defense to Bgt involves extracellular and subsequently intracellular signals. In this study, WAKs were identified genome-wide and phylogenetically analyzed, then a transmembrane WAK gene putatively participated in pathogen-associated molecular patterns (PAMPs)-triggered immunity (PTI) and effector-triggered immunity (ETI) to Bgt was functionally and evolutionarily investigated. In total, 1,193 WAKs were identified from wheat and its Gramineae relatives. Phylogenetic analysis indicated that WAKs expanded through tandem duplication or segment duplication. TaWAK7, from chromosome 2A, was identified as a Bgt-inducible gene both in susceptible and resistant materials but showed distinct responsive patterns. Functional analysis showed that TaWAK7 was involved in both the basal and resistance (R)-gene mediated resistances. The specific gene structures and protein characteristics of TaWAK7 together with its orthologs were characterized both in subgenomes of Triticum and in the A genome of multiple wheat accessions, which revealed that TaWAK7 orthologs underwent complex evolution with frequent gene fusion and domain deletion. In addition, three cytoplasmic proteins interacting with TaWAK7 were indicated by yeast-two-hybrid and BiFC assays. Binding of TaWAK7 with these proteins could change the subcellular localization of TaWAK7 from the plasma membrane to the cytoplasm. This study provides a better understanding of the evolution of WAKs at the genomic level and TaWAK7 at the gene level, and provides useful clues for further investigation of how WAKs transmit the extracellular signals to the cytoplasm to activate defense responses.

2.
Int J Mol Sci ; 24(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37629058

RESUMEN

Sucrose metabolism plays a critical role in development, stress response, and yield formation of plants. Sucrose phosphate synthase (SPS) is the key rate-limiting enzyme in the sucrose synthesis pathway. To date, genome-wide survey and comprehensive analysis of the SPS gene family in soybean (Glycine max) have yet to be performed. In this study, seven genes encoding SPS were identified in soybean genome. The structural characteristics, phylogenetics, tissue expression patterns, and cold stress response of these GmSPSs were investigated. A comparative phylogenetic analysis of SPS proteins in soybean, Medicago truncatula, Medicago sativa, Lotus japonicus, Arabidopsis, and rice revealed four families. GmSPSs were clustered into three families from A to C, and have undergone five segmental duplication events under purifying selection. All GmSPS genes had various expression patterns in different tissues, and family A members GmSPS13/17 were highly expressed in nodules. Remarkably, all GmSPS promoters contain multiple low-temperature-responsive elements such as potential binding sites of inducer of CBF expression 1 (ICE1), the central regulator in cold response. qRT-PCR proved that these GmSPS genes, especially GmSPS8/18, were induced by cold treatment in soybean leaves, and the expression pattern of GmICE1 under cold treatment was similar to that of GmSPS8/18. Further transient expression analysis in Nicotiana benthamiana and electrophoretic mobility shift assay (EMSA) indicated that GmSPS8 and GmSPS18 transcriptions were directly activated by GmICE1. Taken together, our findings may aid in future efforts to clarify the potential roles of GmSPS genes in response to cold stress in soybean.


Asunto(s)
Arabidopsis , Glycine max , Glycine max/genética , Respuesta al Choque por Frío/genética , Filogenia , Sitios de Unión
3.
BMC Plant Biol ; 20(1): 517, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33183238

RESUMEN

BACKGROUND: Plant papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes and play important roles in root nodule symbiosis (RNS), while the whole-genome studies of PLCP family genes in legume are quite limited, and the roles of Glycine max PLCPs (GmPLCPs) in nodulation, nodule development and senescence are not fully understood. RESULTS: In the present study, we identified 97 GmPLCPs and performed a genome-wide survey to explore the expansion of soybean PLCP family genes and their relationships to RNS. Nineteen paralogous pairs of genomic segments, consisting of 77 GmPLCPs, formed by whole-genome duplication (WGD) events were identified, showing a high degree of complexity in duplication. Phylogenetic analysis among different species showed that the lineage differentiation of GmPLCPs occurred after family expansion, and large tandem repeat segment were specifically in soybean. The expression patterns of GmPLCPs in symbiosis-related tissues and nodules identified RNS-related GmPLCPs and provided insights into their putative symbiotic functions in soybean. The symbiotic function analyses showed that a RNS-related GmPLCP gene (Glyma.04G190700) really participate in nodulation and nodule development. CONCLUSIONS: Our findings improved our understanding of the functional diversity of legume PLCP family genes, and provided insights into the putative roles of the legume PLCPs in nodulation, nodule development and senescence.


Asunto(s)
Proteasas de Cisteína/metabolismo , Glycine max/genética , Fijación del Nitrógeno/genética , Papaína/genética , Papaína/metabolismo , Nodulación de la Raíz de la Planta/genética , Simbiosis/genética , Proteasas de Cisteína/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Fijación del Nitrógeno/fisiología , Filogenia , Nodulación de la Raíz de la Planta/fisiología , Rhizobium , Glycine max/fisiología , Encuestas y Cuestionarios , Simbiosis/fisiología
4.
BMC Genomics ; 20(1): 403, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31117939

RESUMEN

The repertoire of RNA-binding proteins (RBPs) in bacteria play a crucial role in their survival, and interactions with the host machinery, but there is little information, record or characterisation in bacterial genomes. As a first step towards this, we have chosen the bacterial model system Escherichia coli, and organised all RBPs in this organism into a comprehensive database named EcRBPome. It contains RBPs recorded from 614 complete E. coli proteomes available in the RefSeq database (as of October 2018). The database provides various features related to the E. coli RBPs, like their domain architectures, PDB structures, GO and EC annotations etc. It provides the assembly, bioproject and biosample details of each strain, as well as cross-strain comparison of occurrences of various RNA-binding domains (RBDs). The percentage of RBPs, the abundance of the various RBDs harboured by each strain have been graphically represented in this database and available alongside other files for user download. To the best of our knowledge, this is the first database of its kind and we hope that it will be of great use to the biological community.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Factuales , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteoma , ARN Bacteriano/genética , Proteínas de Unión al ARN/genética
5.
BMC Genomics ; 18(1): 314, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28427349

RESUMEN

BACKGROUND: miRNAs play essential roles in the modulation of cellular functions via degradation and/or translation attenuation of target mRNAs. They have been surveyed in a single ascidian genus, Ciona. Recently, an annotated draft genome sequence for a distantly related ascidian, Halocynthia roretzi, has become available, but miRNAs in H. roretzi have not been previously studied. RESULTS: We report the prediction of 319 candidate H. roretzi miRNAs, obtained through three complementary methods. Experimental validation suggests that more than half of these candidate miRNAs are expressed during embryogenesis. The majority of predicted H. roretzi miRNAs appear specific to ascidians or tunicates, and only 32 candidates, belonging to 25 families, are widely conserved across metazoans. CONCLUSION: Our study presents a comprehensive identification of candidate H. roretzi miRNAs. This resource will facilitate the study of the mechanisms for miRNA-controlled gene regulatory networks during ascidian development. Further, our analysis suggests that the majority of Halocynthia miRNAs are specific to ascidian or tunicates, with only a small number of widely conserved miRNAs. This result is consistent with the general notion that animal miRNAs are less conserved between taxa than plant ones.


Asunto(s)
Evolución Molecular , Genómica , MicroARNs/genética , Urocordados/genética , Animales , Secuencia de Bases , Secuencia Conservada , Redes Reguladoras de Genes , Especificidad de la Especie
6.
BMC Genomics ; 18(1): 658, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28836963

RESUMEN

BACKGROUND: Pathogenic bacteria have evolved various strategies to counteract host defences. They are also exposed to environments that are undergoing constant changes. Hence, in order to survive, bacteria must adapt themselves to the changing environmental conditions by performing regulations at the transcriptional and/or post-transcriptional levels. Roles of RNA-binding proteins (RBPs) as virulence factors have been very well studied. Here, we have used a sequence search-based method to compare and contrast the proteomes of 16 pathogenic and three non-pathogenic E. coli strains as well as to obtain a global picture of the RBP landscape (RBPome) in E. coli. RESULTS: Our results show that there are no significant differences in the percentage of RBPs encoded by the pathogenic and the non-pathogenic E. coli strains. The differences in the types of Pfam domains as well as Pfam RNA-binding domains, encoded by these two classes of E. coli strains, are also insignificant. The complete and distinct RBPome of E. coli has been established by studying all known E. coli strains till date. We have also identified RBPs that are exclusive to pathogenic strains, and most of them can be exploited as drug targets since they appear to be non-homologous to their human host proteins. Many of these pathogen-specific proteins were uncharacterised and their identities could be resolved on the basis of sequence homology searches with known proteins. Detailed structural modelling, molecular dynamics simulations and sequence comparisons have been pursued for selected examples to understand differences in stability and RNA-binding. CONCLUSIONS: The approach used in this paper to cross-compare proteomes of pathogenic and non-pathogenic strains may also be extended to other bacterial or even eukaryotic proteomes to understand interesting differences in their RBPomes. The pathogen-specific RBPs reported in this study, may also be taken up further for clinical trials and/or experimental validations.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteómica , Proteínas de Unión al ARN/metabolismo , Factores de Virulencia/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Especificidad de la Especie , Factores de Virulencia/genética
7.
Mol Genet Genomics ; 292(6): 1323-1340, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28699001

RESUMEN

Dirigent (DIR) proteins, encoded by DIR genes, are referred to as "dirigent" because they direct the outcome of the coupling of the monolignol coniferyl alcohol into (+) or (-) pinoresinol, the first intermediates in the enantiocomplementary pathways for lignan biosynthesis. DIR domain-containing or DIR-like proteins are, thus, termed for not having a clear characterization. A transcriptome- and genome-wide survey of DIR domain-containing proteins in sugarcane was carried out, in addition to phylogenetic, physicochemical and transcriptional analyses. A total of 120 non-redundant sequences containing the DIR domain were identified and classified into 64 groups according to phylogenetic and sequence alignment analyses. In silico analysis of transcript abundance showed that these sequences are expressed at low levels in leaves and genes in the same phylogenetic clade have similar expression patterns. Expression analysis of ShDIR1-like transcripts in the culm internodes of sugarcane demonstrates their abundance in mature internodes, their induction by nitrogen fertilization and their predominant expression in cells that have a lignified secondary cell wall, such as vascular bundles of young internodes and parenchymal cells of the pith of mature internodes. Due to the lack of information about the functional role of DIR in plants, a possible relationship is discussed between the ShDIR1-like transcriptional profile and cell wall development in parenchyma cells of sugarcane culm, which typically accumulates large amounts of sucrose. The number of genes encoding the DIR domain-containing proteins in sugarcane is intriguing and is an indication per se that these proteins may have an important metabolic role and thus deserve to be better studied.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas de Plantas/metabolismo , Saccharum/metabolismo , Transcripción Genética , Hibridación in Situ , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Conformación Proteica
8.
Plant J ; 84(1): 20-28, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248689

RESUMEN

Plant resistance genes (R genes) harbor tremendous allelic diversity, constituting a robust immune system effective against microbial pathogens. Nevertheless, few functional R genes have been identified for even the best-studied pathosystems. Does this limited repertoire reflect specificity, with most R genes having been defeated by former pests, or do plants harbor a rich diversity of functional R genes, the composite behavior of which is yet to be characterized? Here, we survey 332 NBS-LRR genes cloned from five resistant Oryza sativa (rice) cultivars for their ability to confer recognition of 12 rice blast isolates when transformed into susceptible cultivars. Our survey reveals that 48.5% of the 132 NBS-LRR loci tested contain functional rice blast R genes, with most R genes deriving from multi-copy clades containing especially diversified loci. Each R gene recognized, on average, 2.42 of the 12 isolates screened. The abundant R genes identified in resistant genomes provide extraordinary redundancy in the ability of host genotypes to recognize particular isolates. If the same is true for other pathogens, many extant NBS-LRR genes retain functionality. Our success at identifying rice blast R genes also validates a highly efficient cloning and screening strategy.


Asunto(s)
Resistencia a la Enfermedad/genética , Oryza/genética , Proteínas de Plantas/genética , Estudio de Asociación del Genoma Completo , Magnaporthe/fisiología , Oryza/microbiología , Análisis de Secuencia de ADN
9.
BMC Genomics ; 17(1): 742, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27650568

RESUMEN

BACKGROUND: The study of survival and communication of pathogenic bacteria is important to combat diseases caused by such micro-organisms. Bacterial cells communicate with each other using a density-dependent cell-cell communication process called Quorum Sensing (QS). LuxS protein is an important member of interspecies quorum-sensing system, involved in the biosynthesis of Autoinducer-2 (AI-2), and has been identified as a drug target. Despite the above mentioned significance, their evolution has not been fully studied, particularly from a structural perspective. RESULTS: Search for LuxS in the non-redundant database of protein sequences yielded 3106 sequences. Phylogenetic analysis of these sequences revealed grouping of sequences into five distinct clusters belonging to different phyla and according to their habitat. A majority of the neighbouring genes of LuxS have been found to be hypothetical proteins. However, gene synteny analyses in different bacterial genomes reveal the presence of few interesting gene neighbours. Moreover, LuxS gene was found to be a component of an operon in only six out of 36 genomes. Analysis of conserved motifs in representative LuxS sequences of different clusters revealed the presence of conserved motifs common to sequences of all the clusters as well as motifs unique to each cluster. Homology modelling of LuxS protein sequences of each cluster revealed few structural features unique to protein of each cluster. Analyses of surface electrostatic potentials of the homology models of each cluster showed the interactions that are common to all the clusters, as well as cluster-specific potentials and therefore interacting partners, which may be unique to each cluster. CONCLUSIONS: LuxS protein evolved early during the course of bacterial evolution, but has diverged into five subtypes. Analysis of sequence motifs and homology models of representative members reveal cluster-specific structural properties of LuxS. Further, it is also shown that LuxS protein may be involved in various protein-protein or protein-RNA interactions, which may regulate the activity of LuxS proteins in bacteria.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Liasas de Carbono-Azufre/genética , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Genómica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Liasas de Carbono-Azufre/química , Evolución Molecular , Modelos Moleculares , Filogenia , Conformación Proteica , Sintenía
10.
Front Cell Dev Biol ; 9: 605301, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763415

RESUMEN

The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.

11.
PeerJ ; 7: e7995, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31720116

RESUMEN

As one of the largest plant-specific gene families, the NAC transcription factor gene family plays important roles in various plant physiological processes that are related to plant development, hormone signaling, and biotic and abiotic stresses. However, systematic investigation of the NAC gene family in sea-island cotton (Gossypium babardense L.) has not been reported, to date. The recent release of the complete genome sequence of sea-island cotton allowed us to perform systematic analyses of G. babardense NAC GbNAC) genes. In this study, we performed a genome-wide survey and identified 270 GbNAC genes in the sea-island cotton genome. Genome mapping analysis showed that GbNAC genes were unevenly distributed on 26 chromosomes. Through phylogenetic analyses of GbNACs along with their Arabidopsis counterparts, these proteins were divided into 10 groups (I-X), and each contained a different number of GbNACs with a similar gene structure and conserved motifs. One hundred and fifty-four duplicated gene pairs were identified, and almost all of them exhibited strong purifying selection during evolution. In addition, various cis-acting regulatory elements in GbNAC genes were found to be related to major hormones, defense and stress responses. Notably, transcriptome data analyses unveiled the expression profiles of 62 GbNAC genes under Verticillium wilt (VW) stress. Furthermore, the expression profiles of 15 GbNAC genes tested by quantitative real-time PCR (qPCR) demonstrated that they were sensitive to methyl jasmonate (MeJA) and salicylic acid (SA) treatments and that they could be involved in pathogen-related hormone regulation. Taken together, the genome-wide identification and expression profiling pave new avenues for systematic functional analysis of GbNAC candidates, which may be useful for improving cotton defense against VW.

12.
FEBS J ; 285(10): 1767-1782, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29284196

RESUMEN

Malaria parasites can readily sense and adapt to environmental changes, thus making the control and eradication of this disease difficult. Molecular studies have unraveled a very tightly coordinated transcriptional machinery governed by complex regulatory mechanisms including chromatin modification and spatiotemporal compartmentalization. Histone modifying enzymes play key roles in the regulation of chromatin modification and gene expression, which are associated with cell cycle progression, antigenic variation and immune evasion. Here, we present a comprehensive review of the key regulators of the Plasmodium falciparum histone acetylome; histone acetyltransferases (HATs); and histone deacetylases (HDACs). We describe the genome-wide occurrence of HATs and HDACs in the P. falciparum genome and identify novel, as well as previously unclassified HATs. We re-confirm the presence of five known HDACs and identify, a novel putative HDAC. Interestingly, we identify several HATs and HDACs with unique and noncanonical domain combinations indicating their involvement in other associated functions. Moreover, the phylogenetic analyses of HATs and HDACs suggest that many of them are close to the prokaryotic systems and thus potential candidates for drug development. Our review deciphers the phylogeny of HATs and HDACs of the malaria parasite, investigates their role in drug-resistance generation, and highlights their potential as therapeutic targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Histona Acetiltransferasas/genética , Histona Desacetilasas/genética , Filogenia , Plasmodium falciparum/enzimología , Antiprotozoarios/síntesis química , Antiprotozoarios/farmacología , Cromatina/metabolismo , Desarrollo de Medicamentos , Histona Acetiltransferasas/clasificación , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/clasificación , Histona Desacetilasas/metabolismo , Plasmodium falciparum/efectos de los fármacos , Transcripción Genética
13.
Front Plant Sci ; 7: 1595, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826313

RESUMEN

Nodulation, nodule development and senescence directly affects nitrogen fixation efficiency, and previous studies have shown that inhibition of some cysteine proteases delay nodule senescence, so their nature inhibitors, cystatin genes, are very important in nodulation, nodule development, and senescence. Although several cystatins are actively transcribed in soybean nodules, their exact roles and functional diversities in legume have not been well explored in genome-wide survey studies. In this report, we performed a genome-wide survey of cystatin family genes to explore their relationship to nodulation and nodule development in soybean and identified 20 cystatin genes that encode peptides with 97-245 amino acid residues, different isoelectric points (pI) and structure characteristics, and various putative plant regulatory elements in 3000 bp putative promoter fragments upstream of the 20 soybean cystatins in response to different abiotic/biotic stresses, hormone signals, and symbiosis signals. The expression profiles of these cystatin genes in soybean symbiosis with rhizobium strain Bradyrhizobium japonicum strain 113-2 revealed that 7 cystatin family genes play different roles in nodulation as well as nodule development and senescence. However, these genes were not root nodule symbiosis (RNS)-specific and did not encode special clade cystatin protein with structures related to nodulation and nodule development. Besides, only two of these soybean cystatins were not upregulated in symbiosis after ABA treatment. The functional analysis showed that a candidate gene Glyma.15G227500 (GmCYS16) was likely to play a positive role in soybean nodulation. Besides, evolutionary relationships analysis divided the cystatin genes from Arabidopsis thaliana, Nicotiana tabacum, rice, barley and four legume plants into three groups. Interestingly, Group A cystatins are special in legume plants, but only include one of the above-mentioned 7 cystatin genes related to nodulation and nodule development. Overall, our results provide useful information or clues for our understanding of the functional diversity of legume cystatin family proteins in soybean nodulation and nodule development and for finding nodule-specific cysteine proteases in soybean.

14.
Genome Biol Evol ; 8(9): 2879-2895, 2016 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-27540087

RESUMEN

We developed a computational pipeline for homology based identification of the complete repertoire of olfactory receptor (OR) genes in the Asian honey bee species, Apis florea Apis florea is phylogenetically the most basal honey bee species and also the most distant sister species to the Western honey bee Apis mellifera, for which all OR genes had been identified before. Using our pipeline, we identified 180 OR genes in A. florea, which is very similar to the number of ORs identified in A. mellifera (177 ORs). Many characteristics of the ORs including gene structure, synteny of tandemly repeated ORs and basic phylogenetic clustering are highly conserved. The composite phylogenetic tree of A. florea and A. mellifera ORs could be divided into 21 clades which are in harmony with the existing Hymenopteran tree. However, we found a few nonorthologous OR relationships between both species as well as independent pseudogenization of ORs suggesting separate evolutionary changes. Particularly, a subgroup of the OR gene clade XI, which had been hypothesized to code cuticular hydrocarbon receptors showed a high number of species-specific ORs RNAseq analysis detected a total number of 145 OR transcripts in male and 162 in female antennae. Most of the OR genes were highly expressed on the female antennae. However, we detected five distinct male-biased OR genes, out of which three genes (AfOr11, AfOr18, AfOr170P) were shown to be male-biased in A. mellifera, too, thus corroborating a behavioral function in sex-pheromone communication.


Asunto(s)
Abejas/genética , Genes de Insecto , Filogenia , Receptores Odorantes/genética , Secuencia de Aminoácidos , Animales , Antenas de Artrópodos/crecimiento & desarrollo , Antenas de Artrópodos/metabolismo , Abejas/clasificación , Evolución Biológica , Femenino , Perfilación de la Expresión Génica , Masculino , Receptores Odorantes/química , Análisis de Secuencia de ARN , Homología de Secuencia , Especificidad de la Especie
15.
Evol Appl ; 8(10): 956-71, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26640521

RESUMEN

Captive breeding has the potential to rebuild depressed populations. However, associated genetic changes may decrease restoration success and negatively affect the adaptive potential of the entire population. Thus, approaches that minimize genetic risks should be tested in a comparative framework over multiple generations. Genetic diversity in two captive-reared lines of a species of conservation interest, Chinook salmon (Oncorhynchus tshawytscha), was surveyed across three generations using genome-wide approaches. Genetic divergence from the source population was minimal in an integrated line, which implemented managed gene flow by using only naturally-born adults as captive broodstock, but significant in a segregated line, which bred only captive-origin individuals. Estimates of effective number of breeders revealed that the rapid divergence observed in the latter was largely attributable to genetic drift. Three independent tests for signatures of adaptive divergence also identified temporal change within the segregated line, possibly indicating domestication selection. The results empirically demonstrate that using managed gene flow for propagating a captive-reared population reduces genetic divergence over the short term compared to one that relies solely on captive-origin parents. These findings complement existing studies of captive breeding, which typically focus on a single management strategy and examine the fitness of one or two generations.

16.
Gene ; 542(1): 29-37, 2014 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-24631262

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play significant roles in multiple biological processes in metazoan cells. To address the evolutionary history of this gene family, comprehensive and detailed characterization in basal metazoans is essential. Here I report a genome-wide survey of bHLH genes in the Placozoan, Trichoplax adhaerens. The present survey revealed ancient origins of two orthologous families, 48-related-1/Fer1 and ASCb, which both belong to high-order Group A. Group A factors are mainly involved in neural and mesodermal differentiation. I also identified novel members of a Group E orthologous family previously thought to be unique to Homo sapiens. These were discovered in Trichoplax, Saccoglossus kowalevskii, Euperipatoides kanangrensis, and Crassostrea gigas, but apparently are not found in Drosophila melanogaster, Caenorhabditis elegans, or Nematostella vectensis. Furthermore, as reported previously, many unclassified Group A members were observed in Trichoplax. The present study provides important information to infer the ancestral state of bHLH components in the Metazoa.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Placozoa/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA