Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(3): 549-563.e23, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30661752

RESUMEN

Despite a wealth of molecular knowledge, quantitative laws for accurate prediction of biological phenomena remain rare. Alternative pre-mRNA splicing is an important regulated step in gene expression frequently perturbed in human disease. To understand the combined effects of mutations during evolution, we quantified the effects of all possible combinations of exonic mutations accumulated during the emergence of an alternatively spliced human exon. This revealed that mutation effects scale non-monotonically with the inclusion level of an exon, with each mutation having maximum effect at a predictable intermediate inclusion level. This scaling is observed genome-wide for cis and trans perturbations of splicing, including for natural and disease-associated variants. Mathematical modeling suggests that competition between alternative splice sites is sufficient to cause this non-linearity in the genotype-phenotype map. Combining the global scaling law with specific pairwise interactions between neighboring mutations allows accurate prediction of the effects of complex genotype changes involving >10 mutations.


Asunto(s)
Empalme Alternativo/genética , Empalme del ARN/genética , Receptor fas/genética , Animales , Exones/genética , Técnicas Genéticas , Genética , Genotipo , Humanos , Intrones/genética , Ratones , Modelos Teóricos , Mutación/genética , Fenotipo , Precursores del ARN/metabolismo , Sitios de Empalme de ARN/genética , ARN Mensajero/metabolismo
2.
Annu Rev Cell Dev Biol ; 32: 103-126, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501448

RESUMEN

One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.


Asunto(s)
Redes Reguladoras de Genes , Plantas/genética , Variación Genética , Genotipo , Fenotipo , Biología de Sistemas
3.
Annu Rev Genet ; 54: 439-464, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-32897739

RESUMEN

The complexity of heredity has been appreciated for decades: Many traits are controlled not by a single genetic locus but instead by polymorphisms throughout the genome. The importance of complex traits in biology and medicine has motivated diverse approaches to understanding their detailed genetic bases. Here, we focus on recent systematic studies, many in budding yeast, which have revealed that large numbers of all kinds of molecular variation, from noncoding to synonymous variants, can make significant contributions to phenotype. Variants can affect different traits in opposing directions, and their contributions can be modified by both the environment and the epigenetic state of the cell. The integration of prospective (synthesizing and analyzing variants) and retrospective (examining standing variation) approaches promises to reveal how natural selection shapes quantitative traits. Only by comprehensively understanding nature's genetic tool kit can we predict how phenotypes arise from the complex ensembles of genetic variants in living organisms.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Selección Genética/genética , Variación Genética/genética , Genotipo , Humanos , Fenotipo , Estudios Prospectivos , Estudios Retrospectivos , Saccharomycetales/genética
4.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34676389

RESUMEN

The employment of doubled-haploid (DH) technology in maize has vastly accelerated the efficiency of developing inbred lines. The selection of superior lines has to rely on genotypes with genomic selection (GS) model, rather than phenotypes due to the high expense of field phenotyping. In this work, we implemented 'genome optimization via virtual simulation (GOVS)' using the genotype and phenotype data of 1404 maize lines and their F1 progeny. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' or 'advantageous alleles' in a genetic pool. Such a virtually optimized genome, although can never be developed in reality, may help plot the optimal route to direct breeding decisions. GOVS assists in the selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. The assumption is that the more fragments of optimal genotypes a line contributes to the assembly, the higher the likelihood of the line favored in the F1 phenotype, e.g. grain yield. Compared to traditional GS method, GOVS-assisted selection may avoid using an arbitrary threshold for the predicted F1 yield to assist selection. Additionally, the selected lines contributed complementary sets of advantageous alleles to the virtual genome. This feature facilitates plotting the optimal route for DH production, whereby the fewest lines and F1 combinations are needed to pyramid a maximum number of advantageous alleles in the new DH lines. In summary, incorporation of DH production, GS and genome optimization will ultimately improve genomically designed breeding in maize. Short abstract: Doubled-haploid (DH) technology has been widely applied in maize breeding industry, as it greatly shortens the period of developing homozygous inbred lines via bypassing several rounds of self-crossing. The current challenge is how to efficiently screen the large volume of inbred lines based on genotypes. We present the toolbox of genome optimization via virtual simulation (GOVS), which complements the traditional genomic selection model. GOVS simulates a virtual genome encompassing the most abundant 'optimal genotypes' in a breeding population, and then assists in selection of superior lines based on the genomic fragments that a line contributes to the simulated genome. Availability of GOVS (https://govs-pack.github.io/) to the public may ultimately facilitate genomically designed breeding in maize.


Asunto(s)
Fitomejoramiento , Zea mays , Genotipo , Haploidia , Fenotipo , Fitomejoramiento/métodos , Zea mays/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-39029617

RESUMEN

Comparative ecophysiologists strive to understand physiological problems in non-model organisms, but molecular tools such as RNA interference (RNAi) are under-used in our field. Here, we provide a framework for invertebrate ecophysiologists to use RNAi to answer questions focused on physiological processes, rather than as a tool to investigate gene function. We specifically focus on non-model invertebrates, in which the use of other genetic tools (e.g., genetic knockout lines) is less likely. We argue that because RNAi elicits a temporary manipulation of gene expression, and resources to carry out RNAi are technically and financially accessible, it is an effective tool for invertebrate ecophysiologists. We cover the terminology and basic mechanisms of RNA interference as an accessible introduction for "non-molecular" physiologists, include a suggested workflow for identifying RNAi gene targets and validating biologically relevant gene knockdowns, and present a hypothesis-testing framework for using RNAi to answer common questions in the realm of invertebrate ecophysiology. This review encourages invertebrate ecophysiologists to use these tools and workflows to explore physiological processes and bridge genotypes to phenotypes in their animal(s) of interest.


Asunto(s)
Invertebrados , Interferencia de ARN , Animales , Invertebrados/genética , Invertebrados/fisiología , Técnicas de Silenciamiento del Gen
6.
J Mol Cell Cardiol ; 174: 1-14, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36370475

RESUMEN

Familial cardiomyopathy is a precursor of heart failure and sudden cardiac death. Over the past several decades, researchers have discovered numerous gene mutations primarily in sarcomeric and cytoskeletal proteins causing two different disease phenotypes: hypertrophic (HCM) and dilated (DCM) cardiomyopathies. However, molecular mechanisms linking genotype to phenotype remain unclear. Here, we employ a systems approach by integrating experimental findings from preclinical studies (e.g., murine data) into a cohesive signaling network to scrutinize genotype to phenotype mechanisms. We developed an HCM/DCM signaling network model utilizing a logic-based differential equations approach and evaluated model performance in predicting experimental data from four contexts (HCM, DCM, pressure overload, and volume overload). The model has an overall prediction accuracy of 83.8%, with higher accuracy in the HCM context (90%) than DCM (75%). Global sensitivity analysis identifies key signaling reactions, with calcium-mediated myofilament force development and calcium-calmodulin kinase signaling ranking the highest. A structural revision analysis indicates potential missing interactions that primarily control calcium regulatory proteins, increasing model prediction accuracy. Combination pharmacotherapy analysis suggests that downregulation of signaling components such as calcium, titin and its associated proteins, growth factor receptors, ERK1/2, and PI3K-AKT could inhibit myocyte growth in HCM. In experiments with patient-specific iPSC-derived cardiomyocytes (MLP-W4R;MYH7-R723C iPSC-CMs), combined inhibition of ERK1/2 and PI3K-AKT rescued the HCM phenotype, as predicted by the model. In DCM, PI3K-AKT-NFAT downregulation combined with upregulation of Ras/ERK1/2 or titin or Gq protein could ameliorate cardiomyocyte morphology. The model results suggest that HCM mutations that increase active force through elevated calcium sensitivity could increase ERK activity and decrease eccentricity through parallel growth factors, Gq-mediated, and titin pathways. Moreover, the model simulated the influence of existing medications on cardiac growth in HCM and DCM contexts. This HCM/DCM signaling model demonstrates utility in investigating genotype to phenotype mechanisms in familial cardiomyopathy.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Insuficiencia Cardíaca , Animales , Ratones , Conectina/genética , Conectina/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomiopatía Hipertrófica/genética , Calcio/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Cardiomiopatías/metabolismo , Insuficiencia Cardíaca/metabolismo
7.
Clin Genet ; 104(4): 466-471, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243350

RESUMEN

CHARGE syndrome, due to CHD7 pathogenic variations, is an autosomal dominant disorder characterized by a large spectrum of severity. Despite the great number of variations reported, no clear genotype-to-phenotype correlation has been reported. Unsupervised machine learning and clustering was undertaken using a retrospective cohort of 42 patients, after deep radiologic and clinical phenotyping, to establish genotype-phenotype correlation for CHD7-related CHARGE syndrome. It resulted in three clusters showing phenotypes of different severities. While no clear genotype-phenotype correlation appeared within the first two clusters, a single patient was outlying the cohort data (cluster 3) with the most atypical phenotype and the most distal frameshift variant in the gene. We added two other patients with similar distal pathogenic variants and observed a tendency toward mild and/or atypical phenotypes. We hypothesized that this finding could potentially be related to escaping nonsense mediated RNA decay, but found no evidence of such decay in vivo for any of the CHD7 pathogenic variation tested. This indicates that this milder phenotype may rather result from the production of a protein retaining all functional domains.


Asunto(s)
Síndrome CHARGE , Humanos , Síndrome CHARGE/genética , Estudios Retrospectivos , Fenotipo , Estudios de Asociación Genética , Genotipo , Mutación/genética
8.
Mol Breed ; 43(11): 81, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37965378

RESUMEN

Accurately identifying varieties with targeted agronomic traits was thought to contribute to genetic selection and accelerate rice breeding progress. Genomic selection (GS) is a promising technique that uses markers covering the whole genome to predict the genomic-estimated breeding values (GEBV), with the ability to select before phenotypes are measured. To choose the appropriate GS models for breeding work, we analyzed the predictability of nine agronomic traits measured from a population of 459 diverse rice varieties. By the comparison of eight representative GS models, we found that the prediction accuracies ranged from 0.407 to 0.896, with reproducing kernel Hilbert space (RKHS) having the highest predictive ability in most traits. Further results demonstrated the predictivity of GS is altered by several factors. Moreover, we assessed the method of integrating genome-wide association study (GWAS) into various GS models. The predictabilities of GS combined peak-associated markers generated from six different GWAS models were significantly different; a recommendation of Mixed Linear Model (MLM)-RKHS was given for the GWAS-GS-integrated prediction. Finally, based on the above result, we experimented with applying the P-values obtained from optimal GWAS models into ridge regression best linear unbiased prediction (rrBLUP), which benefited the low predictive traits in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01423-y.

9.
Bioessays ; 43(9): e2100062, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34245050

RESUMEN

The unprecedented prowess of measurement techniques provides a detailed, multi-scale look into the depths of living systems. Understanding these avalanches of high-dimensional data-by distilling underlying principles and mechanisms-necessitates dimensional reduction. We propose that living systems achieve exquisite dimensional reduction, originating from their capacity to learn, through evolution and phenotypic plasticity, the relevant aspects of a non-random, smooth physical reality. We explain how geometric insights by mathematicians allow one to identify these genuine hallmarks of life and distinguish them from universal properties of generic data sets. We illustrate these principles in a concrete example of protein evolution, suggesting a simple general recipe that can be applied to understand other biological systems.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Aprendizaje , Proteínas
10.
BMC Plant Biol ; 22(1): 275, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35658831

RESUMEN

BACKGROUND: Predicting the phenotype from the genotype is one of the major contemporary challenges in biology. This challenge is greater in plants because their development occurs mostly post-embryonically under diurnal and seasonal environmental fluctuations. Most current crop simulation models are physiology-based models capable of capturing environmental fluctuations but cannot adequately capture genotypic effects because they were not constructed within a genetics framework. RESULTS: We describe the construction of a mixed-effects dynamic model to predict time-to-flowering in the common bean (Phaseolus vulgaris L.). This prediction model applies the developmental approach used by traditional crop simulation models, uses direct observational data, and captures the Genotype, Environment, and Genotype-by-Environment effects to predict progress towards time-to-flowering in real time. Comparisons to a traditional crop simulation model and to a previously developed static model shows the advantages of the new dynamic model. CONCLUSIONS: The dynamic model can be applied to other species and to different plant processes. These types of models can, in modular form, gradually replace plant processes in existing crop models as has been implemented in BeanGro, a crop simulation model within the DSSAT Cropping Systems Model. Gene-based dynamic models can accelerate precision breeding of diverse crop species, particularly with the prospects of climate change. Finally, a gene-based simulation model can assist policy decision makers in matters pertaining to prediction of food supplies.


Asunto(s)
Phaseolus , Fitomejoramiento , Simulación por Computador , Genotipo , Phaseolus/genética , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA