Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38588505

RESUMEN

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Asunto(s)
Arcilla , Metales de Tierras Raras , Minerales , Adsorción , Metales de Tierras Raras/química , Arcilla/química , Minerales/química , Concentración de Iones de Hidrógeno , Silicatos de Aluminio/química
2.
J Environ Manage ; 359: 120929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38669878

RESUMEN

Understanding the variations in the geochemical composition of phosphogypsum (PG) destined for storage or valorization is crucial for assessing the safety and operational efficacy of waste management. The present study aimed to investigate the environmental behavior of PG using different leaching tests and to evaluate its geochemical behavior using geochemical modeling. Regarding the chemical characterization, the PG samples were predominantly composed of Ca (23.03-23.35 wt%), S (17.65-17.71 wt%), and Si (0.75-0.82 wt%). Mineralogically, the PG samples were primarily composed of gypsum (94.2-95.9 wt%) and quartz (1.67-1.76 wt%). Moreover, the automated mineralogy revealed the presence of apatite, fluorine and malladrite phases. The overall findings of the leaching tests showed that PG could be considered as non-hazardous material according to US Environmental Protection Agency limitations. However, a high leachability of elements at a L/S of 2 under acidic conditions ([Ca] = 166.52-199.87 mg/L, [S] = 207.9-233.59 mg/L, [F] = 248.62-286.65 mg/L) is observed. The weathering cell test revealed a considerable cumulative concentration over 90 days indicating potential adverse effects on the nearby environment (S: 8000 mg/kg, F: 3000 mg/kg, P: 700 mg/kg). Based on these results, it could be estimated that the surface storage of PG could have a serious impact on the environment. In this context, a simulation model was developed based on weathering cell results showed encouraging results for treating PG leachate using CaO before its disposal. Additionally, PHREEQC was used to analyze the speciation of major elements and calculate mineral phase saturation indices in PG leaching solutions. The findings revealed pH-dependent speciation for Ca, S, P, and F. The study identified gypsum, anhydrite, and bassanite as the key phases governing the dissolution of these elements.


Asunto(s)
Sulfato de Calcio , Fósforo , Sulfato de Calcio/química , Sulfato de Calcio/análisis , Fósforo/análisis , Fósforo/química , Administración de Residuos/métodos
3.
Environ Sci Technol ; 57(34): 12869-12878, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37586073

RESUMEN

Barite (BaSO4) precipitation is one of the most ubiquitous examples of secondary sulfate mineral scaling in shale oil and gas reservoirs. Often, a suite of chemical additives is used during fracturing operations to inhibit the accumulation of mineral scales, though their efficacy is widely varied and poorly understood. This study combines experimental data and multi-component numerical reactive transport modeling to offer a more comprehensive understanding of the geochemical behavior of barite accumulation in shale matrices under conditions typical of fracturing operations. A variety of additives and conditions are individually tested in batch reactor experiments to identify the factors controlling barite precipitation. Our experimental results demonstrate a pH dependence in the rate of barite precipitation, which we use to develop a predictive model including a pH-dependent term that satisfactorily reproduces our observations. This model is then extended to consider the behavior of three major shale samples of highly variable mineralogy (Eagle Ford, Marcellus, and Barnett). This data-validated model offers a reliable tool to predict and ultimately mitigate against secondary mineral accumulation in unconventional shale reservoirs.


Asunto(s)
Sulfato de Bario , Yacimiento de Petróleo y Gas , Sulfatos , Minerales
4.
Chem Geol ; 6362023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37601980

RESUMEN

We integrated aqueous chemistry analyses with geochemical modeling to determine the kinetics of the dissolution of Na and K uranyl arsenate solids (UAs(s)) at acidic pH. Improving our understanding of how UAs(s) dissolve is essential to predict transport of U and As, such as in acid mine drainage. At pH 2, Na0.48H0.52(UO2)(AsO4)(H2O)2.5(s) (NaUAs(s)) and K0.9H0.1(UO2)(AsO4)(H2O)2.5(s) (KUAs(s)) both dissolve with a rate constant of 3.2 × 10-7 mol m-2 s-1, which is faster than analogous uranyl phosphate solids. At pH 3, NaUAs(s) (6.3 × 10-8 mol m-2 s-1) and KUAs(s) (2.0 × 10-8 mol m-2 s-1) have smaller rate constants. Steady-state aqueous concentrations of U and As are similarly reached within the first several hours of reaction progress. This study provides dissolution rate constants for UAs(s), which may be integrated into reactive transport models for risk assessment and remediation of U and As contaminated waters.

5.
Environ Geochem Health ; 45(6): 3891-3906, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36609946

RESUMEN

Multiple interactions of geogenic and anthropogenic activities can trigger groundwater pollution in the tropical savanna watershed. These interactions and resultant contamination have been studied using applied geochemical modeling, conventional hydrochemical plots, and multivariate geochemometric methods, and the results are presented in this paper. The high alkalinity values recorded for the studied groundwater samples might emanate from the leaching of carbonate soil derived from limestone coupled with low rainfall and high temperature in the area. The principal component analysis (PCA) unveils three components with an eigenvalue > 1 and a total dataset variance of 67.37%; this implies that the temporary hardness of the groundwater and water-rock interaction with evaporite minerals (gypsum, halite, calcite, and trona) is the dominant factor affecting groundwater geochemistry. Likewise, the PCA revealed anthropogenic contamination by discharging [Formula: see text] [Formula: see text][Formula: see text] and [Formula: see text] from agricultural activities and probable sewage leakages. Hierarchical cluster analysis (HCA) also revealed three clusters; cluster I reflects the dissolution of gypsum and halite with a high elevated load of [Formula: see text] released by anthropogenic activities. However, cluster II exhibited high [Formula: see text] and [Formula: see text] loading in the groundwater from weathering of bicarbonate and sylvite minerals. Sulfate ([Formula: see text]) dominated cluster III mineralogy resulting from weathering of anhydrite. The three clusters in the Maiganga watershed indicated anhydrite, gypsum, and halite undersaturation. These results suggest that combined anthropogenic and natural processes in the study area are linked with saturation indexes that regulate the modification of groundwater quality.


Asunto(s)
Contaminantes Ambientales , Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Ambientales/análisis , Sulfato de Calcio/análisis , Pradera , Agua Subterránea/química , Carbonatos/análisis , Carbonato de Calcio/análisis , Calidad del Agua
6.
Environ Sci Technol ; 56(7): 4336-4344, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35297619

RESUMEN

Celestite (SrSO4) precipitation is a prevalent example of secondary sulfate mineral scaling issues in hydraulic fracturing systems, particularly in basins where large concentrations of naturally occurring strontium are present. Here, we present a validated and flexible geochemical model capable of predicting celestite formation under such unconventional environments. Simulations were built using CrunchFlow and guided by experimental data derived from batch reactors. These data allowed the constraint of key kinetic and thermodynamic parameters for celestite precipitation under relevant synthetic hydraulic fracturing fluid conditions. Effects of ionic strength, saturation index, and the presence of additives were considered in the combined experimental and modeling construction. This geochemical model was then expanded into a more complex system where interactions between hydraulic fracturing fluids and shale rocks were allowed to occur subject to diffusive transport. We find that the carbonate content of a given shale and the presence of persulfate breaker in the system strongly impact the location and extent of celestite formation. The results of this study provide a novel multicomponent reactive transport model that may be used to guide future experimental design in the pursuit of celestite and other sulfate mineral scale mitigation under extreme conditions typical of hydraulic fracturing in shale formations.


Asunto(s)
Fracking Hidráulico , Minerales/química , Gas Natural , Concentración Osmolar , Estroncio , Sulfatos
7.
Environ Monit Assess ; 194(5): 352, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35403925

RESUMEN

Evolution of groundwater geochemistry in the Sulaimani-Warmawa Sub-basin in the Kurdistan Region of Iraq has been investigated using hydrogeochemical and isotopic methods. This is a semiarid region with seasonal precipitation in winter. Water chemistry generally evolves from Ca-HCO3 groundwater type close to the basin boundaries towards Ca-Mg-HCO3 groundwater type close to the Tanjero River along the axis of the basin. Some samples have increased concentrations of Na, Cl, and SO4 as a consequence of dissolution of halite and gypsum embedded in carbonates. Values of pH are slightly alkaline or alkaline, and redox parameters indicate a moderately reducing environment. Isotopes δ2H and δ18O indicate recharge from winter precipitation with no evaporation. Values of dissolved 13C(DIC) correspond to equilibrium with carbonates and C4 plants as the source of CO2. Values of 87Sr/86Sr in groundwater are in a good agreement with carbonate dissolution as a principal process. The principal geogenic contaminant is Ba with concentrations up to 0.383 mg/L. Dissolved concentrations of other geogenic contaminants such as As, F, Mn, and Cr are low or below the detection limit as expected based on their low contents in carbonate rocks. Inverse geochemical modeling on selected profiles calibrated using δ13C values provided mass transfer coefficients for possible geochemical reactions. Future work should focus on interactions in the hyporheic zone of the Tanjero River.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Carbonatos/análisis , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Irak , Contaminantes Químicos del Agua/análisis
8.
Environ Sci Technol ; 55(17): 11906-11915, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34415763

RESUMEN

The world adds about 51 Gt of greenhouse gases to the atmosphere each year, which will yield dire global consequences without aggressive action in the form of carbon dioxide removal (CDR) and other technologies. A suggested guideline requires that proposed CDR technologies be capable of removing at least 1% of current annual emissions, about half a gigaton, from the atmosphere each year once fully implemented for them to be worthy of pursuit. Basalt carbonation coupled to direct air capture (DAC) can exceed this baseline, but it is likely that implementation at the gigaton-per-year scale will require increasing per-well CO2 injection rates to a point where CO2 forms a persistent, free-phase CO2 plume in the basaltic subsurface. Here, we use a series of thermodynamic calculations and basalt dissolution simulations to show that the development of a persistent plume will reduce carbonation efficiency (i.e., the amount of CO2 mineralized per kilogram of basalt dissolved) relative to existing field projects and experimental studies. We show that variations in carbonation efficiency are directly related to carbonate mineral solubility, which is a function of solution alkalinity and pH/CO2 fugacity. The simulations demonstrate the sensitivity of carbonation efficiency to solution alkalinity and caution against directly extrapolating carbonation efficiencies inferred from laboratory studies and small-injection-rate field studies conducted under elevated alkalinity and/or pH conditions to gigaton-per-year scale basalt carbonation. Nevertheless, all simulations demonstrate significant carbonate mineralization and thus imply that significant mineral carbonation can be expected even at the gigaton-per-year scale if basalts are given time to react.


Asunto(s)
Dióxido de Carbono , Silicatos , Carbonatos , Minerales
9.
Environ Sci Technol ; 55(18): 12539-12548, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34491048

RESUMEN

Injecting supercritical CO2 (scCO2) into basalt formations for long-term storage is a promising strategy for mitigating CO2 emissions. Mineral carbonation can result in permanent entrapment of CO2; however, carbonation kinetics in thin H2O films in humidified scCO2 is not well understood. We investigated forsterite (Mg2SiO4) carbonation to magnesite (MgCO3) via amorphous magnesium carbonate (AMC; MgCO3·xH2O, 0.5 < x < 1), with the goal to establish the fundamental controls on magnesite growth rates at low H2O activity and temperature. Experiments were conducted at 25, 40, and 50 °C in 90 bar CO2 with a H2O film thickness on forsterite that averaged 1.78 ± 0.05 monolayers. In situ infrared spectroscopy was used to monitor forsterite dissolution and the growth of AMC, magnesite, and amorphous SiO2 as a function of time. Geochemical kinetic modeling showed that magnesite was supersaturated by 2 to 3 orders of magnitude and grew according to a zero-order rate law. The results indicate that the main drivers for magnesite growth are sustained high supersaturation coupled with low H2O activity, a combination of thermodynamic conditions not attainable in bulk aqueous solution. This improved understanding of reaction kinetics can inform subsurface reactive transport models for better predictions of CO2 fate and transport.


Asunto(s)
Secuestro de Carbono , Agua , Dióxido de Carbono , Magnesio , Dióxido de Silicio , Temperatura
10.
Environ Geochem Health ; 43(9): 3351-3374, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33651264

RESUMEN

Geochemical modeling has been employed in several fields of science and engineering in recent years. This review seeks to provide an overview of case studies that applied geochemical modeling in the 2019 year, which includes over 250 articles. This review is intended to inform new users on the possibilities that geochemical modeling brings, while also informing existing and past users on its latest developments. The survey of studies was conducted with an emphasis on the modeling techniques, the objective of studies, the prevalent simulated variables and the use of specific software packages. The analysis showed that geochemical modeling is still predominantly employed in experimental projects and in the form of equilibrium modeling. PHREEQC and Visual MINTEQ were recognized as the most popular software packages for simulating a wide range of processes, using equilibrium or other geochemical modeling forms. The study of fluid-rock interactions and pollution and remediation processes can be regarded as the principal geochemical modeling objectives, constituting 37% and 36% of the reviewed studies, respectively. Focusing on fluid-rock interactions, hydrogeochemical processes, carbon capture and storage and enhanced oil recovery have been the main topics examined with geochemical modeling. Assessments of the toxicity of metals in terms of leachate and mobilization, as well as their removal from soil and water systems, have been major topics investigated with the aid of geochemical modeling in terms of pollution and remediation research. It was found that the scholars benefit from geochemical modeling in their research both as a main technique and as an accessory tool. Saturation index, elemental concentration and speciation, mineral mass and composition and pH were among the most common variables modeled in reviewed studies. Geochemical modeling has gained a wider user base in recent years, and many research groups have used it in consecutive studies to deepen knowledge. However, much potential for further dissemination still remains.


Asunto(s)
Suelo , Contaminantes Químicos del Agua , Metales/análisis , Agua , Contaminantes Químicos del Agua/análisis
11.
J Environ Manage ; 253: 109720, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31654932

RESUMEN

Inclusion of cement in fly ash and slag mixed soils could potentially alter the leaching behavior of elements. This study investigated the leaching characteristics of calcium (Ca), magnesium (Mg), sulfur (S), manganese (Mn), barium (Ba) and chromium (Cr) from cement activated soil-fly ash, soil-slag mixtures and soil, fly ash, steel slag and cement alone. Batch water leach tests, acid neutralization capacity and pH-dependent leach tests were performed. Test results indicated that, effluent concentrations of Ca and Ba increased, while Mg concentrations decreased with cement additions. No consistent trend was observed between S concentrations and cement content. The leaching of Cr and Mn remained unaffected by cement incorporation. Results of this study showed that the solution pH had the greatest influence on the leaching behaviors of the elements. Ca, Mg, S and Mn followed cationic leaching patterns, whereas Ba showed both cationic and amphoteric leaching patterns. The highest concentrations of Cr were observed at extreme acidic conditions, followed by a concentration plateau at the pH range of 5.5-10, and subsequent decrease and increase in concentrations at pH of 11.5 and 13, respectively. Geochemical modeling results suggested that except for Cr, the leaching mechanisms of the elements were controlled by their sulfate and (hydr)oxide minerals. The leaching of Cr was possibly controlled by BaCrO4 and CaCrO4. It was observed that the presence of carbonate minerals did not play a significant role on the leaching mechanisms of the elements, when cement was used as an activator.


Asunto(s)
Ceniza del Carbón , Contaminantes del Suelo , Cromo , Materiales de Construcción , Suelo
12.
Proc Natl Acad Sci U S A ; 113(46): 12952-12956, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27791057

RESUMEN

The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = -0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairn´s characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs.

13.
Ecotoxicol Environ Saf ; 174: 498-505, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30856562

RESUMEN

Vanadium (V)-contaminated soil poses health risks to plants, animals, and humans via both direct exposure and through the food chain. Stabilization treatment of metal-contaminated soil can chemically convert metal contaminants into less soluble, mobile, and toxic forms. However, the stabilization mechanisms of V-contaminated soil have not been thoroughly investigated. Therefore, we performed geochemical modeling of V-contaminated soil stabilized with the common binders calcium oxide (CaO) and ferrous sulfate (FeSO4), as well as their mixture, using Visual MINTEQ software. The results were validated and exhibited good agreement with experimental results. For CaO, the formation of Ca2V2O7(s) and Ca3(VO4)2·4H2O(s) under mild and strong alkaline conditions (pH = 8.0-11.5 and 11.5-12.5), respectively, were predicted as the main immobilization routes. For FeSO4, there appeared to be three reaction routes, corresponding to approaches A, B, and C, during the stabilization process. In the simulation, approach C (adsorption of V(V) onto ferrihydrite) was undervalued, whereas approaches A (formation of Fe(VO3)2(s)) and B (reduction of V(V) into V(IV) to form V2O4(s) or adsorb onto soil organic matter) were overvalued. Among the three approaches, approach C had a dominant role and exhibited good agreement with the experimental results. Additionally, soil pH and the saturation index of precipitation had major roles in the stabilization process. The optimal pH ranges for the stabilization of V-contaminated soil using CaO and FeSO4 were pH = 9.5-12.5 and pH = 4.0-5.0, respectively.


Asunto(s)
Compuestos de Calcio/química , Restauración y Remediación Ambiental/métodos , Compuestos Ferrosos/química , Modelos Teóricos , Óxidos/química , Contaminantes del Suelo/análisis , Vanadio/análisis , Adsorción , China , Simulación por Computador , Programas Informáticos , Suelo/química
14.
Environ Monit Assess ; 191(11): 685, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31659477

RESUMEN

Geologic carbon sequestration (GCS) projects in the USA are required to monitor groundwater quality for geochemical changes above the injection area that may be a result of CO2 or brine leakage from the storage reservoir. Should CO2 migrate into the groundwater around the compliance wells monitoring the shallower hydrologic units, each compliance parameter could react differently depending on its sensitivity to CO2. Statistically determined limits (SDLs) for detection of CO2 leakage into groundwater were calculated using background water quality data from the Illinois Basin Decatur Project (IBDP) sequestration site and prediction and tolerance intervals for specific compliance parameters. If the parameter concentrations varied outside of these ranges during the injection and post injection periods of a GCS project, then additional actions would be required to determine the reason for the changes in groundwater concentrations. Geochemical modeling can simulate the amount of CO2 needed to alter water quality parameters a statistically significant amount. This information can then inform GCS operators and regulators as to which compliance parameters are relevant (sensitive) to CO2 leakage for a given setting. For the system studied in here, Fe, Ca, K, Mg, CO2, and pH were sensitive to CO2 addition while Al, Cl, Na, and Si were not.


Asunto(s)
Dióxido de Carbono/análisis , Secuestro de Carbono , Monitoreo del Ambiente , Agua Subterránea/química , Geología , Illinois , Sales (Química) , Calidad del Agua
15.
Environ Geochem Health ; 40(4): 1405-1435, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29299860

RESUMEN

Quality of groundwater in the Yarmouk basin, Jordan has been assessed through the study of hydrogeochemical characteristics and the water chemistry as it is considered the main source for drinking and agriculture activities in the region. The results of the relationship between Ca2+ + Mg2+ versus HCO3- + CO32-, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl- + SO42- versus Na+ + K+, Na+ versus Cl-, Na+ versus HCO3- + CO32-, Na+ versus Ca2+, and Na+: Cl- versus EC describe the mineral dissolution mechanism through the strong relationship between water with rocks in alkaline conditions with the release of Ca2+, Mg2+, Na+, K+, HCO3-, CO32-, SO42-, and F- ions in the groundwater for enrichment. Furthermore, evaporation processes, groundwater depletion, and ion exchange contribute to the increased concentration of Na+ and Cl- ions in groundwater. Anthropogenic sources are one of the main reasons for contamination of groundwater in the study area and for increasing the concentration of Mg2+, Na+, Cl-, SO42-, and NO3- ions. Results show the quality of groundwater in the study area is categorized as follows: HCO3- + CO32- > Cl- > SO42- > NO3- > F- and Na+ > Ca2+ > Mg2+ > K+. In conclusion, the results of TDS, TH, and chemical composition showed that 26% of the groundwater samples were unsuitable for drinking. About 28% of groundwater samples in the study area have a high concentration of Mg2+, Na+, and NO3- above the acceptable limit. Also, based on high SAR, 10% of the groundwater samples were not suitable for irrigation purposes.


Asunto(s)
Aniones/análisis , Cationes/análisis , Agua Subterránea/química , Riego Agrícola , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno , Jordania , Contaminantes Químicos del Agua/análisis
16.
J Environ Manage ; 193: 567-575, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28242112

RESUMEN

Phosphogypsum (PPG) is the byproduct of the production of phosphoric acid and phosphate fertilizers from phosphate rocks (PR) by acid digestion. Despite the technical feasibility, the impurities present in this waste make its reuse critical and large amounts of PPG are stockpiled, resulting in the production of polluted acid leachates. The aim of the present study was to characterize the spatial variability and evolution in time of a 20-year-old gypstack and to study the geochemical behavior of the waste in order to assess the best management options. Chemical and mineralogical analyses were performed on core samples taken from 4 different depths of the stack down to 13.5 m. Despite the high homogeneity shown by chemical and mineral characterization, leaching tests revealed a different chemical behavior with depth. pH-dependent leaching tests were also performed to measure the acid neutralization capacity of the studied matrices and to determine the leachability of the elements or pollutants of concern as a function of pH. The study was focused on Ca, Fe Na, Si, Cd and Sr and on F-, PO43- and SO42- anions. The geochemical modeling of these tests with PHREEQC enabled the identification of the minor phases controlling the solubilization of the elements analyzed. Validation of the model by the simulation of a column leaching test suggested that the model could be used as a predictive tool to assess different management scenarios.


Asunto(s)
Fertilizantes , Fosfatos , Contaminación Ambiental , Concentración de Iones de Hidrógeno
17.
Proc Natl Acad Sci U S A ; 110(46): 18407-12, 2013 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-24170863

RESUMEN

The Mesozoic Era is characterized by numerous oceanic anoxic events (OAEs) that are diagnostically expressed by widespread marine organic-carbon burial and coeval carbon-isotope excursions. Here we present coupled high-resolution carbon- and sulfur-isotope data from four European OAE 2 sections spanning the Cenomanian-Turonian boundary that show roughly parallel positive excursions. Significantly, however, the interval of peak magnitude for carbon isotopes precedes that of sulfur isotopes with an estimated offset of a few hundred thousand years. Based on geochemical box modeling of organic-carbon and pyrite burial, the sulfur-isotope excursion can be generated by transiently increasing the marine burial rate of pyrite precipitated under euxinic (i.e., anoxic and sulfidic) water-column conditions. To replicate the observed isotopic offset, the model requires that enhanced levels of organic-carbon and pyrite burial continued a few hundred thousand years after peak organic-carbon burial, but that their isotope records responded differently due to dramatically different residence times for dissolved inorganic carbon and sulfate in seawater. The significant inference is that euxinia persisted post-OAE, but with its global extent dwindling over this time period. The model further suggests that only ~5% of the global seafloor area was overlain by euxinic bottom waters during OAE 2. Although this figure is ~30× greater than the small euxinic fraction present today (~0.15%), the result challenges previous suggestions that one of the best-documented OAEs was defined by globally pervasive euxinic deep waters. Our results place important controls instead on local conditions and point to the difficulty in sustaining whole-ocean euxinia.


Asunto(s)
Modelos Químicos , Oxígeno/análisis , Agua de Mar/química , Isótopos de Azufre/análisis , Historia Antigua , Sulfuro de Hidrógeno/química , Océanos y Mares
18.
Sci Total Environ ; 943: 173776, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38862046

RESUMEN

High­arsenic groundwater is influenced by a combination of processes: reductive dissolution of iron minerals and formation of secondary minerals, metal complexation and redox reactions of organic matter (OM), and formation of more migratory thioarsenate, which together can lead to significant increases in arsenic concentration in groundwater. This study was conducted in a typical sulfur- and arsenic-rich groundwater site within the Datong Basin to explore the conditions of thioarsenate formation and its influence on arsenic enrichment in groundwater using HPLC-ICPMS, hydrogeochemical modeling, and fluorescence spectroscopy. The shallow aquifer exhibited a highly reducing environment, marked by elevated sulfide levels, low concentrations of Fe(II), and the highest proportion of thioarsenate. In the middle aquifer, an optimal ∑S/∑As led to the presence of significant quantities of thioarsenate. In contrast, the deep aquifer exhibited low sulfide and high Fe(II) concentration, with arsenic primarily originating from dissolved iron minerals. Redox fluctuations in the sediment driven by sulfur­iron minerals generated reduced sulfur, thereby facilitating thioarsenate formation. OM played a crucial role as an electron donor for microbial activities, promoting iron and sulfate reduction processes and creating conditions conducive to thioarsenate formation in reduced and high­sulfur environments. Understanding the process of thioarsenate formation and the influencing factors is of paramount importance for comprehending the migration and redistribution of arsenic in groundwater systems.

19.
Sci Total Environ ; 947: 174676, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009157

RESUMEN

This research employs a GIS-assisted approach of multivariate statistics and inverse geochemical modeling to unravel the processes driving groundwater salinization in a complex aquifer system. Multivariate statistical methods define the end-member water groups, identifying dominant processes explaining hydrogeochemical variance in wet and dry season water chemistry datasets. Mineral saturation indices (SIs) and inverse geochemical modeling (IGM) investigate potential geochemical reactions and mixing processes responsible for the observed groundwater compositions and their spatiotemporal evolution along reversed flow paths caused by overexploitation in the Rhodope aquifer system. Results reveal that a concise set of reactant and product phases, including CO2(g), H2O, calcite, gypsum, halite, celestite, plagioclase, K-feldspar, illite, and Ca-montmorillonite, along with ion exchange processes (CaX2, MgX2, and NaX), explains the hydrogeochemical evolution of groundwater along reversed flow paths between genetically and compositionally different surface and groundwater bodies. Systematic changes in water chemistry along the flow paths are attributed to mixing of surface waters and/or different groundwater end-members, dilution by a freshwater component, water-rock interaction (WRI) processes, and ion exchange involving Ca/Mg- and/or Na-clays. The chemical evolution represented by IGMs initiates with the mixing of Aegean seawater and Aspropotamos River, incorporating WRI and ion exchange processes (Mg- and Na-clays) to produce the water chemistry of Vistonida Lake, the only surface water body with hydraulic interaction with the groundwater system in the study area. Statistically-defined end-member water groups effectively explain the groundwater flow system and evolutionary processes between hydraulically connected surface and groundwater bodies. Overall, the fusion of multivariate statistical analysis (MVSA), inverse geochemical modeling (IGM), and GIS techniques proves potent and comprehensive, enhancing understanding of groundwater dynamics, improving prediction accuracy, aiding proficient management, and facilitating data-driven decision-making within the realm of groundwater assessment and management.

20.
ACS ES T Water ; 4(7): 2944-2956, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39005241

RESUMEN

A multitude of geochemical processes control the aqueous concentration and transport properties of trace metal contaminants such as arsenic (As) in groundwater environments. Effective As remediation, especially under reducing conditions, has remained a significant challenge. Fe(II) nitrate treatments are a promising option for As immobilization but require optimization to be most effective. Here, we develop a process-based numerical modeling framework to provide an in-depth understanding of the geochemical mechanisms controlling the response of As-contaminated sediments to Fe(II) nitrate treatment. The analyzed data sets included time series from two batch experiments (control vs treatment) and effluent concentrations from a flow-through column experiment. The reaction network incorporates a mixture of homogeneous and heterogeneous reactions affecting Fe redox chemistry. Modeling revealed that the precipitation of the Fe treatment caused a rapid pH decline, which then triggered multiple heterogeneous buffering processes. The model quantifies key processes for effective remediation, including the transfer of aqueous As to adsorbed As and the transformation of Fe minerals, which act as sorption hosts, from amorphous to more stable phases. The developed model provides the basis for predictions of the remedial benefits of Fe(II) nitrate treatments under varying geochemical and hydrogeological conditions, particularly in high-As coastal environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA