Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 39(6): 436-438, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997429

RESUMEN

Gigantism is prevalent in animals, but it has never reached more extreme levels than in aquatic mammals such as whales, dolphins, and porpoises. A new study by Silva et al. has uncovered five genes underlying this gigantism, a phenotype with important connections to aging and cancer suppression in long-lived animals.


Asunto(s)
Neoplasias , Ballenas , Animales , Ballenas/genética , Neoplasias/genética , Océanos y Mares
2.
Am J Hum Genet ; 109(4): 553-570, 2022 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-35202564

RESUMEN

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.


Asunto(s)
Acromegalia , Enfermedades Genéticas Ligadas al Cromosoma X , Gigantismo , Neoplasias Hipofisarias , Acromegalia/complicaciones , Acromegalia/genética , Acromegalia/patología , Preescolar , Cromatina/genética , Comunicación , Proteínas de Unión al ADN/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Gigantismo/complicaciones , Gigantismo/genética , Gigantismo/patología , Humanos , Neoplasias Hipofisarias/genética , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción/genética
3.
Genomics ; 116(5): 110896, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39025318

RESUMEN

Pamphagidae is a family of Acridoidea that inhabits the desert steppes of Eurasia and Africa. This study employed flow cytometry to estimate the genome size of eight species in the Pamphagidae. The results indicate that the genome size of the eight species ranged from 13.88 pg to 14.66 pg, with an average of 14.26 pg. This is the largest average genome size recorded for the Orthoptera families, as well as for the entire Insecta. Furthermore, the study explored the role of repetitive sequences in the genome, including their evolutionary dynamics and activity, using low-coverage next-generation sequencing data. The genome is composed of 14 different types of repetitive sequences, which collectively make up between 59.9% and 68.17% of the total genome. The Pamphagidae family displays high levels of transposable element (TE) activity, with the number of TEs increasing and accumulating since the family's emergence. The study found that the types of repetitive sequences contributing to the TE outburst events are similar across species. Additionally, the study identified unique repetitive elements for each species. The differences in repetitive sequences among the eight Pamphagidae species correspond to their phylogenetic relationships. The study sheds new light on genome gigantism in the Pamphagidae and provides insight into the correlation between genome size and repetitive sequences within the family.

4.
Semin Cell Dev Biol ; 128: 69-77, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35469677

RESUMEN

Satellite DNAs are arrays of tandem repeats found in the eukaryotic genome. They are mainly found in pericentromeric heterochromatin and have been believed to be mostly inert, leading satellite DNAs to be erroneously regarded as junk. Recent studies have started to elucidate the function of satellite DNA, yet little is known about the peculiar case where satellite DNA is found within the introns of protein coding genes, resulting in incredibly large introns, a phenomenon termed intron gigantism. Studies in Drosophila demonstrated that satellite DNA-containing introns are transcribed with the gene and require specialized mechanisms to overcome the burdens imposed by the extremely long stretches of repetitive DNA. Whether intron gigantism confers any benefit or serves any functional purpose for cells and/or organisms remains elusive. Here we review our current understanding of intron gigantism: where it is found, the challenges it imposes, how it is regulated and what purpose it may serve.


Asunto(s)
ADN Satélite , Gigantismo , Animales , ADN Satélite/genética , Drosophila/genética , Gigantismo/genética , Heterocromatina/genética , Intrones
5.
Proc Biol Sci ; 291(2027): 20241184, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39079669

RESUMEN

Eurypterids-Palaeozoic marine and freshwater arthropods commonly known as sea scorpions-repeatedly evolved to remarkable sizes (over 0.5 m in length) and colonized continental aquatic habitats multiple times. We compiled data on the majority of eurypterid species and explored several previously proposed explanations for the evolution of giant size in the group, including the potential role of habitat, sea surface temperature and dissolved sea surface oxygen levels, using a phylogenetic comparative approach with a new tip-dated tree. There is no compelling evidence that the evolution of giant size was driven by temperature or oxygen levels, nor that it was coupled with the invasion of continental aquatic environments, latitude or local faunal diversity. Eurypterid body size evolution is best characterized by rapid bursts of change that occurred independently of habitat or environmental conditions. Intrinsic factors played a major role in determining the convergent origin of gigantism in eurypterids.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Ecosistema , Filogenia , Animales , Escorpiones/anatomía & histología , Escorpiones/clasificación , Escorpiones/fisiología , Fósiles/anatomía & histología
6.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654650

RESUMEN

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Filogenia , Animales , Passeriformes/fisiología , Teorema de Bayes , América del Sur , Aves/fisiología
7.
J Endocrinol Invest ; 47(4): 777-793, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37891382

RESUMEN

PURPOSE: Tall stature is defined as height greater than the threshold of more than 2 standard deviations above the average population height for age, sex, and ethnicity. Many studies have described the main aspects of this condition during puberty, but an analysis of the characteristics that the physician should consider in the differential diagnosis of gigantism-tall stature secondary to a pituitary tumour-during the transition age (15-25 years) is still lacking. METHODS: A comprehensive search of English-language original articles was conducted in the MEDLINE database (December 2021-March 2022). We selected all studies regarding epidemiology, genetic aspects, and the diagnosis of tall stature and gigantism during the transition age. RESULTS: Generally, referrals for tall stature are not as frequent as expected because most cases are familial and are usually unreported by parents and patients to endocrinologists. For this reason, lacking such experience of tall stature, familiarity with many rarer overgrowth syndromes is essential. In the transition age, it is important but challenging to distinguish adolescents with high constitutional stature from those with gigantism. Pituitary gigantism is a rare disease in the transition age, but its systemic complications are very relevant for future health. Endocrine evaluation is crucial for identifying conditions that require hormonal treatment so that they can be treated early to improve the quality of life and prevent comorbidities of individual patient in this age range. CONCLUSION: The aim of our review is to provide a practical clinical approach to recognise adolescents, potentially affected by gigantism, as early as possible.


Asunto(s)
Gigantismo , Adolescente , Humanos , Adulto Joven , Adulto , Calidad de Vida , Síndrome , Diagnóstico Diferencial , Estatura
8.
Skeletal Radiol ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254838

RESUMEN

Somatic overgrowth disorders comprise a wide range of rare conditions that present with focal enlargement of one or more tissue types. The PI3K-AKT-mTOR pathway is a signalling pathway that induces angiogenesis and cell proliferation, and is one of the most commonly overactivated signalling pathways in cancer. The PI3K-AKT-mTOR pathway can be up-regulated by genetic variants that code for proteins in this pathway, or down-regulated by proteins that inhibit the pathway. Mosaic genetic variations can result in cells that proliferate excessively in specific anatomical locations. The PIK3CA-related overgrowth spectrum (PROS) disorders include CLOVES syndrome, macrodystrophia lipomatosa, and Klippel-Trenaunay syndrome among many. The neurofibromatosis type 1 (NF1) gene encodes neurofibromin which down-regulates the PI3K-AKT-mTOR pathway. Thousands of pathological variants in the NF1 gene have been described which can result in lower-than-normal levels of neurofibromin and therefore up-regulation of the PI3K-AKT-mTOR pathway promoting cellular overgrowth. Somatic overgrowth is a rare presentation in NF1 with a wide range of clinical and radiological presentations. Hypertrophy of all ectodermal and mesodermal elements has been described in NF1 including bone, muscle, fat, nerve, lymphatics, arteries and veins, and skin. The shared signalling pathway for cellular overgrowth means that these radiological appearances can overlap with other conditions in the PIK3CA-related overgrowth spectrum. The aim of this review is to describe the genetic basis for the radiological features of NF1 and in particular compare the appearances of the somatic overgrowth disorders in NF1 with other conditions in the PIK3CA-related overgrowth spectrum.

9.
Proc Biol Sci ; 290(2013): 20232177, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38113937

RESUMEN

Baleen whales (mysticetes) include the largest animals on the Earth. How they achieved such gigantic sizes remains debated, with previous research focusing primarily on when mysticetes became large, rather than where. Here, we describe an edentulous baleen whale fossil (21.12-16.39 mega annum (Ma)) from South Australia. With an estimated body length of 9 m, it is the largest mysticete from the Early Miocene. Analysing body size through time shows that ancient baleen whales from the Southern Hemisphere were larger than their northern counterparts. This pattern seemingly persists for much of the Cenozoic, even though southern specimens contribute only 19% to the global mysticete fossil record. Our findings contrast with previous ideas of a single abrupt shift towards larger size during the Plio-Pleistocene, which we here interpret as a glacially driven Northern Hemisphere phenomenon. Our results highlight the importance of incorporating Southern Hemisphere fossils into macroevolutionary patterns, especially in light of the high productivity of Southern Ocean environments.


Asunto(s)
Fósiles , Ballenas , Animales , Tamaño Corporal , Australia del Sur
10.
Ann Bot ; 132(7): 1233-1248, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-37818893

RESUMEN

BACKGROUND AND AIMS: Gigantism is a key component of the domestication syndrome, a suite of traits that differentiates crops from their wild relatives. Allometric gigantism is strongly marked in horticultural crops, causing disproportionate increases in the size of edible parts such as stems, leaves or fruits. Tomato (Solanum lycopersicum) has attracted attention as a model for fruit gigantism, and many genes have been described controlling this trait. However, the genetic basis of a corresponding increase in size of vegetative organs contributing to isometric gigantism has remained relatively unexplored. METHODS: Here, we identified a 0.4-Mb region on chromosome 7 in introgression lines (ILs) from the wild species Solanum pennellii in two different tomato genetic backgrounds (cv. 'M82' and cv. 'Micro-Tom') that controls vegetative and reproductive organ size in tomato. The locus, named ORGAN SIZE (ORG), was fine-mapped using genotype-by-sequencing. A survey of the literature revealed that ORG overlaps with previously mapped quantitative trait loci controlling tomato fruit weight during domestication. KEY RESULTS: Alleles from the wild species led to lower cell number in different organs, which was partially compensated by greater cell expansion in leaves, but not in fruits. The result was a proportional reduction in leaf, flower and fruit size in the ILs harbouring the alleles from the wild species. CONCLUSIONS: Our findings suggest that selection for large fruit during domestication also tends to select for increases in leaf size by influencing cell division. Since leaf size is relevant for both source-sink balance and crop adaptation to different environments, the discovery of ORG could allow fine-tuning of these parameters.


Asunto(s)
Gigantismo , Solanum lycopersicum , Solanum , Solanum lycopersicum/genética , Tamaño de los Órganos/genética , Gigantismo/genética , Sitios de Carácter Cuantitativo/genética , Solanum/genética , Frutas/genética
11.
Pituitary ; 26(4): 333-339, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37270760

RESUMEN

PURPOSE: We present a historical overview on neuropathic ulcers in patients with acromegalic gigantism. MATERIALS AND METHODS: The case histories of 6 famous patients with acromegalic gigantism and living in the twentieth century were analyzed. The combined final height and maximum weight of these giants were: 272 cm. & 215.9 kg., 218.4 cm. & 125 kg., 242 cm. & 165 kg., 220.5 cm. & 135 kg., 235 cm. & 136 kg. and 224.8 cm. & 174 kg. CONCLUSIONS: Neuropathic foot ulcers leading to hospital admissions and surgical and medical interventions were reported in 6 patients with acromegalic gigantism. These ulcers significantly impaired the daily activities of these individuals. Neuropathies of the sural nerve in patients with acromegalic gigantism can lead to hypoesthesia and hypoalgesia of the lower legs and feet. Potential contributing factors for the development of neuropathic ulcers of the feet in patients with acromegalic gigantism and neuropathy might be leg and foot deformities, muscle weakness and poor quality footwear. Diabetes mellitus, or impaired glucose intolerance does not necessarily seem to play a role.


Asunto(s)
Acromegalia , Pie Diabético , Gigantismo , Humanos , Úlcera , Pie
12.
Pituitary ; 26(1): 51-56, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36335516

RESUMEN

PURPOSE: We present the results of transsphenoidal microsurgical treatment in 14 patients with gigantism. The influence on the prognosis of factors such as the tumor size and preoperative levels of GH and IGF-1 is also quantified. MATERIALS AND METHODS: The patients, operated between 1982 and 2004, were reviewed retrospectively in June 2022. All patients had complete endocrinological studies in the preoperative period and a postoperative control between 6 days and 3 weeks. Follow-up has been supported with annual check-ups between 3 and 31 years. We have compared the preoperative levels of GH and IGF-1 of these patients with the levels of a series of acromegalic patients operated on in the same Center. RESULTS: In this series there were 4 women and 10 men. The age ranged between 14 and 21 years. In 6 patients, postoperative hormone levels achieved the disease control criteria (42.8%). The CT/MRI studies revealed the existence of invasive tumors in 10 of the patients (71.4%). Postoperative CT/MRI showed no tumor tissue in 3 patients but in 7 patients there were tumor remains. The remaining 4 patients had abnormal images although not considered as tumor. A statistical comparison of preoperative serum GH and IGF-1 levels in patients with gigantism and patients with acromegaly showed a significant elevation in the former. CONCLUSION: Pituitary adenomas that cause gigantism are generally large and invasive, which makes them difficult to cure. High preoperative levels of GH and IGF-1 are also factors that decrease remission.


Asunto(s)
Acromegalia , Gigantismo , Hormona de Crecimiento Humana , Neoplasias Hipofisarias , Masculino , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Gigantismo/cirugía , Acromegalia/cirugía , Acromegalia/etiología , Factor I del Crecimiento Similar a la Insulina , Pronóstico , Estudios Retrospectivos , Neoplasias Hipofisarias/cirugía , Neoplasias Hipofisarias/complicaciones , Resultado del Tratamiento
13.
Mol Biol Evol ; 38(5): 1715-1730, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33169792

RESUMEN

Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.


Asunto(s)
Evolución Biológica , Tamaño Corporal/genética , Genoma , Roedores/genética , Animales , Femenino , Crecimiento/genética , Familia de Multigenes , Neoplasias/genética , Roedores/crecimiento & desarrollo
14.
Mol Biol Evol ; 38(1): 84-95, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33035304

RESUMEN

Reconstructing the evolutionary history of island biotas is complicated by unusual morphological evolution in insular environments. However, past human-caused extinctions limit the use of molecular analyses to determine origins and affinities of enigmatic island taxa. The Caribbean formerly contained a morphologically diverse assemblage of caviomorph rodents (33 species in 19 genera), ranging from ∼0.1 to 200 kg and traditionally classified into three higher-order taxa (Capromyidae/Capromyinae, Heteropsomyinae, and Heptaxodontidae). Few species survive today, and the evolutionary affinities of living and extinct Caribbean caviomorphs to each other and to mainland taxa are unclear: Are they monophyletic, polyphyletic, or paraphyletic? We use ancient DNA techniques to present the first genetic data for extinct heteropsomyines and heptaxodontids, as well as for several extinct capromyids, and demonstrate through analysis of mitogenomic and nuclear data sets that all sampled Caribbean caviomorphs represent a well-supported monophyletic group. The remarkable morphological and ecological variation observed across living and extinct caviomorphs from Cuba, Hispaniola, Jamaica, Puerto Rico, and other islands was generated through within-archipelago evolutionary radiation following a single Early Miocene overwater colonization. This evolutionary pattern contrasts with the origination of diversity in many other Caribbean groups. All living and extinct Caribbean caviomorphs comprise a single biologically remarkable subfamily (Capromyinae) within the morphologically conservative living Neotropical family Echimyidae. Caribbean caviomorphs represent an important new example of insular mammalian adaptive radiation, where taxa retaining "ancestral-type" characteristics coexisted alongside taxa occupying novel island niches. Diversification was associated with the greatest insular body mass increase recorded in rodents and possibly the greatest for any mammal lineage.


Asunto(s)
ADN Antiguo/análisis , Roedores/genética , Animales , Filogeografía , Indias Occidentales
15.
J Anat ; 241(2): 297-336, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35249216

RESUMEN

Sauropodomorph dinosaurs include the largest terrestrial animals that ever lived on Earth. The early representatives of this clade were, however, relatively small and partially to totally bipedal, conversely to the gigantic and quadrupedal sauropods. Although the sauropod bauplan is well defined, notably by the acquisition of columnar limbs, the evolutionary sequence leading to its emergence remains debated. Here, we aim to tackle this evolutionary episode by investigating shape variation in the six limb long bones for the first time using three-dimensional geometric morphometrics. The morphological features of the forelimb zeugopod bones related to the sauropod bauplan tend to appear abruptly, whereas the pattern is more gradual for the hindlimb zeugopod bones. The stylopod bones tend to show the same pattern as their respective zeugopods. The abrupt emergence of the sauropod forelimb questions the locomotor abilities of non-sauropodan sauropodomorphs inferred as quadrupeds. Features characterizing sauropods tend to corroborate a view of their locomotion mainly based on stylopod retraction. An allometric investigation of the shape variation in accordance with size highlight differences in hindlimb bone allometries between the sauropods and the non-sauropodan sauropodomorphs. These differences notably correspond to an unexpected robustness decrease trend in the sauropod hindlimb zeugopod. In addition to forelimb bones that appear to be proportionally more gracile than in non-sauropodan sauropodomorphs, sauropods may have relied on limb architecture and features related to the size increase, rather than general robustness, to deal with the role of weight-bearing.


Asunto(s)
Dinosaurios , Gigantismo , Animales , Evolución Biológica , Huesos/anatomía & histología , Dinosaurios/anatomía & histología , Fósiles , Filogenia
16.
Proc Natl Acad Sci U S A ; 116(36): 17632-17634, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31427521

RESUMEN

The island rule predicts that small animals evolve to become larger on islands, while large animals evolve to become smaller. It has been studied for over half a century, and its validity is fiercely debated. Here, we provide a perspective on the debate by conducting a test of the island rule in plants. Results from an extensive dataset on islands in the southwest Pacific illustrate that plant stature and leaf area obey the island rule, but seed size does not. Our results indicate that the island rule may be more pervasive than previously thought and that support for its predictions varies among functional traits.


Asunto(s)
Bases de Datos Factuales , Ecosistema , Desarrollo de la Planta , Plantas , Islas
17.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35457001

RESUMEN

The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Masculino , Mamíferos/genética , Modelos Biológicos , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma Y/genética
18.
Ecol Lett ; 24(11): 2524-2525, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34514680

RESUMEN

We are delighted that Diniz-Filho et al. agree with the main premise of our paper, and we welcome their critique, as constructive debate will help foster a better understanding of size evolution on islands. Our perspective on each of their criticisms is discussed in greater detail below.


Asunto(s)
Evolución Biológica , Tamaño Corporal
19.
Ecol Lett ; 24(8): 1646-1654, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34010500

RESUMEN

The island rule is a putative pattern in island evolution, where small species become larger on islands and large species become smaller. Despite decades of study, a mechanistic explanation for why some taxonomic groups obey the island rule, while others do not, has yet to be identified. Here, we explore whether the island rule might result from evolutionary drift. We derived a simulation model that predicts evolutionary size changes on islands based on random evolutionary trajectories along bounded trait domains. The model consistently predicted the island rule and could account for its occurrence in plants inhabiting islands in the Southwest Pacific. When support for the island rule was not detected, insular gigantism was often observed, suggesting that natural selection was at work. Overall results indicate that evolutionary drift can provide a parsimonious explanation for the island rule, suggesting future work should focus on circumstances where it does not occur.


Asunto(s)
Evolución Biológica , Selección Genética , Islas , Fenotipo , Plantas
20.
Am J Med Genet C Semin Med Genet ; 187(2): 176-181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33982857

RESUMEN

Individuals with overgrowth have been the subjects of numerous myths and art pieces in various cultures, often depicted as deities or creatures of divine origin, such as giants or titans. In more recent times, however, subjects with signs of generalized or segmental overgrowth have been considered as "freaks of nature," in the disparaging language of the time, and represented in artworks as elements of entertainment or amusement. The different meanings assigned to overgrowth in myth and art through time provide an interesting perspective of the sociocultural approach to dysmorphic traits and genetic disorders.


Asunto(s)
Gigantismo , Pesos y Medidas Corporales , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA