Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(9)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38123981

RESUMEN

Excessive oscillatory activity across basal ganglia (BG) nuclei in the ß frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated ß oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of ß-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal ß oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal ß oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-ß (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-ß range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD ß oscillations and may thereby guide the future development of therapeutic strategies.


Asunto(s)
Enfermedad de Parkinson , Núcleo Subtalámico , Ratas , Animales , Ganglios Basales/fisiología , Globo Pálido/fisiología , Neuronas/fisiología , Ritmo beta/fisiología
2.
J Neurosci ; 43(8): 1281-1297, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36623877

RESUMEN

Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.


Asunto(s)
Neuronas GABAérgicas , Globo Pálido , Ratones , Masculino , Femenino , Animales , Globo Pálido/fisiología , Axones , Parvalbúminas , Proteínas del Tejido Nervioso , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
3.
J Neurosci ; 43(35): 6112-6125, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37400253

RESUMEN

Oscillatory signals propagate in the basal ganglia from prototypic neurons in the external globus pallidus (GPe) to their target neurons in the substantia nigra pars reticulata (SNr), internal pallidal segment, and subthalamic nucleus. Neurons in the GPe fire spontaneously, so oscillatory input signals can be encoded as changes in timing of action potentials within an ongoing spike train. When GPe neurons were driven by an oscillatory current in male and female mice, these spike-timing changes produced spike-oscillation coherence over a range of frequencies extending at least to 100 Hz. Using the known kinetics of the GPe→SNr synapse, we calculated the postsynaptic currents that would be generated in SNr neurons from the recorded GPe spike trains. The ongoing synaptic barrage from spontaneous firing, frequency-dependent short-term depression, and stochastic fluctuations at the synapse embed the input oscillation into a noisy sequence of synaptic currents in the SNr. The oscillatory component of the resulting synaptic current must compete with the noisy spontaneous synaptic barrage for control of postsynaptic SNr neurons, which have their own frequency-dependent sensitivities. Despite this, SNr neurons subjected to synaptic conductance changes generated from recorded GPe neuron firing patterns also became coherent with oscillations over a broad range of frequencies. The presynaptic, synaptic, and postsynaptic frequency sensitivities were all dependent on the firing rates of presynaptic and postsynaptic neurons. Firing rate changes, often assumed to be the propagating signal in these circuits, do not encode most oscillation frequencies, but instead determine which signal frequencies propagate effectively and which are suppressed.SIGNIFICANCE STATEMENT Oscillations are present in all the basal ganglia nuclei, include a range of frequencies, and change over the course of learning and behavior. Exaggerated oscillations are a hallmark of basal ganglia pathologies, and each has a specific frequency range. Because of its position as a hub in the basal ganglia circuitry, the globus pallidus is a candidate origin for oscillations propagating between nuclei. We imposed low-amplitude oscillations on individual globus pallidus neurons at specific frequencies and measured the coherence between the oscillation and firing as a function of frequency. We then used these responses to measure the effectiveness of oscillatory propagation to other basal ganglia nuclei. Propagation was effective for oscillation frequencies as high as 100 Hz.


Asunto(s)
Porción Reticular de la Sustancia Negra , Núcleo Subtalámico , Masculino , Femenino , Ratones , Animales , Ganglios Basales/fisiología , Globo Pálido , Potenciales Sinápticos , Potenciales de Acción/fisiología
4.
J Neurophysiol ; 131(5): 914-936, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38596834

RESUMEN

Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.


Asunto(s)
Potenciales Postsinápticos Inhibidores , Neuronas , Optogenética , Animales , Ratones , Neuronas/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Cuerpo Estriado/fisiología , Cuerpo Estriado/citología , Globo Pálido/fisiología , Globo Pálido/citología , Potenciales de Acción/fisiología , Masculino , Ratones Endogámicos C57BL , Femenino , Vías Nerviosas/fisiología , Sinapsis/fisiología
5.
Neurobiol Dis ; 199: 106581, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38936434

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE: We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS: Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS: The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS: Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Globo Pálido , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiopatología , Globo Pálido/fisiología , Núcleo Subtalámico/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Adulto , Distonía/terapia , Distonía/fisiopatología , Índice de Severidad de la Enfermedad , Anciano , Adulto Joven , Resultado del Tratamiento
6.
Neurobiol Dis ; 190: 106362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992783

RESUMEN

The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.


Asunto(s)
Globo Pálido , Núcleo Subtalámico , Globo Pálido/metabolismo , Cuerpo Estriado , Ganglios Basales/fisiología , Neuronas/metabolismo , Vías Nerviosas/fisiología
7.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651310

RESUMEN

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Asunto(s)
Ganglios Basales , Distonía , Corteza Motora , Vías Nerviosas , Trastornos Parkinsonianos , Ratas Long-Evans , Animales , Corteza Motora/fisiopatología , Corteza Motora/patología , Trastornos Parkinsonianos/fisiopatología , Trastornos Parkinsonianos/patología , Ratas , Vías Nerviosas/fisiopatología , Distonía/fisiopatología , Distonía/patología , Distonía/etiología , Ganglios Basales/patología , Masculino , Globo Pálido/patología , Modelos Animales de Enfermedad
8.
J Neurogenet ; 38(2): 41-45, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39007626

RESUMEN

Pyruvate Dehydrogenase (PDH) E2 deficiency due to Dihydrolipoamide acetyltransferase (DLAT) mutations is a very rare condition with only nine reported cases to date. We describe a 15-year-old girl with mild intellectual disability, paroxysmal dystonia and bilateral basal ganglia signal abnormalities on brain magnetic resonance imaging (MRI). Additionally, neurophysiological, imaging, metabolic and exome sequencing studies were performed. Routine metabolite testing, and GLUT1 and PRRT2 mutation analysis were negative. A repeat brain MRI revealed 'Eye-of-the-tiger-sign'. Exome sequencing identified homozygous valine to glycine alteration at amino acid position 157 in the DLAT gene. Bioinformatic and family analyses indicated that the alteration was likely pathogenic. Patient's dystonia was responsive to low-dose carbamazepine. On weaning carbamazepine, patient developed hallucinations which resolved after carbamazepine was restarted. PDH E2 deficiency due to DLAT mutation has a more benign course compared to common forms of PDH E1 deficiency due to X-linked PDHA1 mutations. All known cases of PDH E2 deficiency due to DLAT mutations share the features of episodic dystonia and intellectual disability. Our patient's dystonia and hallucinations responded well to low-dose carbamazepine.


Asunto(s)
Carbamazepina , Distonía , Alucinaciones , Humanos , Femenino , Adolescente , Distonía/genética , Distonía/tratamiento farmacológico , Carbamazepina/uso terapéutico , Alucinaciones/genética , Alucinaciones/tratamiento farmacológico , Mutación , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico
9.
Cerebellum ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761352

RESUMEN

Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.

10.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38456947

RESUMEN

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Potenciales Evocados Somatosensoriales/fisiología , Núcleo Subtalámico/fisiología , Tálamo/fisiología , Enfermedad de Parkinson/terapia , Electrodos , Globo Pálido , Electrodos Implantados
11.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 445-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37507486

RESUMEN

Opioid addiction is a global problem that has been exacerbated in the USA and Europe by the COVID-19 pandemic. The globus pallidus (GP) plays a prominent neurobiological role in the regulation of behaviour as an output station of the striato-pallidal system. GABAergic large projection neurons are the main neuronal type in the external (EGP) and internal (IGP) parts of the GP, where addiction-specific molecular and functional abnormalities occur. In these neurons, glutamate decarboxylase (GAD) with isoforms GAD 65 and 67 is a key enzyme in GABA synthesis, and experimental studies suggest GAD dysregulation in the GP of heroin addicts. Our study, which was performed on paraffin-embedded brains from the Magdeburg Brain Bank, aimed to investigate abnormalities in the GABAergic function of large GP neurons by densitometric evaluation of their GAD 65/67-immunostained thick dendrites. The study revealed a bilaterally decreased fibres density in the EGP paralleled by the increase in the IGP in 11 male heroin addicts versus 11 healthy controls (significant U-test P values). The analysis of confounding variables found no interference of age, brain volume, and duration of formalin fixation with the results. Our findings suggest a dysregulation of GABAergic activity in the GP of heroin addicts, which is consistent with experimental data from animal models and plays potentially a role in the disturbed function of basal ganglia circuit in opioid addiction.


Asunto(s)
Globo Pálido , Trastornos Relacionados con Opioides , Animales , Masculino , Humanos , Heroína , Pandemias , Ganglios Basales
12.
Neurosurg Focus ; 56(6): E16, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38823054

RESUMEN

OBJECTIVE: Craniocervical dystonia (CCD) is a common type of segmental dystonia, which is a disabling disease that has been frequently misdiagnosed. Blepharospasm or cervical dystonia is the most usual symptom initially. Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been widely used for treating CCD, its clinical outcome has been primarily evaluated in small-scale studies. This research examines the sustained clinical effectiveness of DBS of the GPi in individuals diagnosed with CCD. METHODS: The authors report 24 patients (14 women, 10 men) with refractory CCD who underwent DBS of the GPi between 2016 and 2023. The severity and disability of the dystonia were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The BFMDRS scores were collected preoperatively, 6 months postoperatively, and at the most recent follow-up visit. RESULTS: The mean age at onset was 52.0 ± 11.0 years (range 33-71 years) and the mean disease duration was 63.3 ± 73.3 months (range 7-360 months) (values for continuous variables are expressed as the mean ± SD). The mean follow-up period was 37.5 ± 23.5 months (range 6-84 months). The mean total BFMDRS motor scores at the 3 different time points were 13.3 ± 9.4 preoperatively, 5.0 ± 4.7 (55.3% improvement, p < 0.001) at 6 months, and 4.5 ± 3.6 (56.6% improvement, p < 0.001) at last follow-up. The outcomes were deemed poor in 6 individuals. CONCLUSIONS: Inferences drawn from the findings suggest that DBS of the GPi has long-lasting effectiveness and certain limitations in managing refractory CCD. The expected stability of the clinical outcome is not achieved. Patients with specific types of dystonia might consider targets other than GPi for a more precise therapy.


Asunto(s)
Estimulación Encefálica Profunda , Globo Pálido , Humanos , Estimulación Encefálica Profunda/métodos , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Estudios de Seguimiento , Resultado del Tratamiento , Tortícolis/terapia , Trastornos Distónicos/terapia
13.
Dysphagia ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236261

RESUMEN

Deep brain stimulation (DBS) is a common treatment for motor symptoms of Parkinson disease (PD), a condition associated with increased risk of dysphagia. The effect of DBS on swallowing function has not been comprehensively evaluated using gold-standard imaging techniques, particularly for globus pallidus internus (GPi) DBS. The objective of this retrospective, cross-sectional study was to identify differences in swallowing safety and timing kinematics among PD subjects with and without GPi DBS. We investigated the effects of unilateral and bilateral GPi DBS as well as the relationship between swallowing safety and DBS stimulation parameters, using retrospective analysis of videofluoroscopy recordings (71 recordings from 36 subjects) from electronic medical records. Outcomes were analyzed by surgical status (pre-surgical, unilateral DBS, bilateral DBS). The primary outcome was percent of thin-liquid bolus trials rated as unsafe, with Penetration-Aspiration Scale scores of 3 or higher. Secondary analyses included swallowing timing measures, relationships between swallowing safety and DBS stimulation parameters, and Dynamic Imaging Grade of Swallowing Toxicity ratings. Most subjects swallowed all boluses safely (19/29 in the pre-surgical, 16/26 in the unilateral DBS, and 10/16 in the bilateral DBS conditions). Swallowing safety impairment did not differ among stimulation groups. There was no main effect of stimulation condition on timing metrics, though main effects were found for sex and bolus type. Stimulation parameters were not correlated with swallowing safety. Swallowing efficiency and overall impairment did not differ among conditions. These results provide evidence that GPi DBS does not affect pharyngeal swallowing function. Further, prospective, investigations are needed.

14.
Clin Anat ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39076145

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is a standard treatment for Parkinson's disease (PD), with both regions exhibiting similar treatment effectiveness. However, posttreatment neuropsychiatric side effects, such as severe depression, are common, primarily due to the loss of serotonergic cells. Identifying a region with fewer serotonergic neurons could potentially reduce these side effects. This study aimed to quantify the number of serotonergic neurons in the STN and GPi. Both regions were analyzed using hematoxylin and eosin staining and immunohistochemistry. The GPi exhibited a significantly lower number and H-score of serotonergic neurons than the STN. Within the STN, the number and H-score of serotonergic neurons were higher in the medial aspect than in the lateral aspect. Three different types of neurons, large and small, were observed. In STN, large neurons were concentrated in the center and small neurons in the periphery. This distribution was not observed in GPi. In addition, the concentration of the serotonergic neurons is less in GPi. These findings suggest that the GPi may be a safer target region, potentially reducing the incidence of post-DBS depression.

15.
Neuromodulation ; 27(3): 551-556, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37768258

RESUMEN

BACKGROUND: Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES: We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS: Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS: Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS: LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.


Asunto(s)
Estimulación Encefálica Profunda , Distonía , Trastornos Distónicos , Niño , Humanos , Globo Pálido , Distonía/diagnóstico , Distonía/terapia , Trastornos Distónicos/diagnóstico , Trastornos Distónicos/terapia , Electrodos Implantados
16.
Neuromodulation ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38597859

RESUMEN

OBJECTIVE: This study aimed to investigate the long-term efficacy and prognosis of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with benign essential blepharospasm (BEB) and complete Meige syndrome, and to search for the best therapeutic subregion within the GPi. MATERIALS AND METHODS: Data were collected for 36 patients with Meige syndrome who underwent bilateral GPi-DBS surgery at our hospital between March 2014 and February 2022. Using the Burk-Fahn-Marsden Dystonia Rating Scale (BFMDRS)-Movement (BFMDRS-M) and BFMDRS-Disability (BFMDRS-D), the severity of the symptoms of patients with complete Meige syndrome was evaluated before surgery and at specific time points after surgery. Patients with BEB were clinically evaluated for the severity of blepharospasm using BFMDRS-M, the Blepharospasm Disability Index (BDI), and Jankovic Rating Scale (JRS). Three-dimensional reconstruction of the GPi-electrode was performed in some patients using the lead-DBS software, and the correlation between GPi subregion volume of tissue activated (VTA) and symptom improvement was analyzed in patients six months after surgery. The follow-up duration ranged from six to 99 months. RESULTS: Compared with preoperative scores, the results of all patients at six months after surgery and final follow-up showed a significant decrease (p < 0.05) in the mean BFMDRS-M score. Among them, the average BFMDRS-M improvement rates in patients with BEB at six months after surgery and final follow-up were 60.3% and 69.7%, respectively, whereas those in patients with complete Meige syndrome were 54.5% and 58.3%, respectively. The average JRS and BDI scores of patients with BEB also decreased significantly (p < 0.05) at six months after surgery and at the final follow-up (JRS improvement: 38.6% and 49.1%, respectively; BDI improvement: 42.6% and 57.4%, respectively). We were unable to identify significantly correlated prognostic factors. There was a significant correlation between GPi occipital VTA and symptom improvement in patients at six months after surgery (r = 0.34, p = 0.025). CONCLUSIONS: Our study suggests that bilateral GPi-DBS is an effective treatment for Meige syndrome, with no serious postoperative complications. The VTA in the GPi subregion may be related to the movement score improvement. In addition, further research is needed to predict patients with poor surgical outcomes.

17.
J Neurosci ; 42(10): 2080-2102, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35058372

RESUMEN

The debilitating psychomotor symptoms of Huntington's disease (HD) are linked partly to degeneration of the basal ganglia indirect pathway. At early symptomatic stages, before major cell loss, indirect pathway neurons exhibit numerous cellular and synaptic changes in HD and its models. However, the impact of these alterations on circuit activity remains poorly understood. To address this gap, optogenetic- and reporter-guided electrophysiological interrogation was used in early symptomatic male and female Q175 HD mice. D2 dopamine receptor-expressing striatal projection neurons (D2-SPNs) were hypoactive during synchronous cortical slow-wave activity, consistent with known reductions in dendritic excitability and cortical input strength. Downstream prototypic parvalbumin-expressing external globus pallidus (PV+ GPe) neurons discharged at 2-3 times their normal rate, even during periods of D2-SPN inactivity, arguing that defective striatopallidal inhibition was not the only cause of their hyperactivity. Indeed, PV+ GPe neurons also exhibited abnormally elevated autonomous firing ex vivo Optogenetic inhibition of PV+ GPe neurons in vivo partially and fully ameliorated the abnormal hypoactivity of postsynaptic subthalamic nucleus (STN) and putative PV- GPe neurons, respectively. In contrast to STN neurons whose autonomous firing is impaired in HD mice, putative PV- GPe neuron activity was unaffected ex vivo, implying that excessive inhibition was responsible for their hypoactivity in vivo Together with previous studies, these data demonstrate that (1) indirect pathway nuclei are dysregulated in Q175 mice through changes in presynaptic activity and/or intrinsic cellular and synaptic properties; and (2) prototypic PV+ GPe neuron hyperactivity and excessive target inhibition are prominent features of early HD pathophysiology.SIGNIFICANCE STATEMENT The early symptoms of Huntington's disease (HD) are linked to degenerative changes in the action-suppressing indirect pathway of the basal ganglia. Consistent with this linkage, the intrinsic properties of cells in this pathway exhibit complex alterations in HD and its models. However, the impact of these changes on activity is poorly understood. Using electrophysiological and optogenetic approaches, we demonstrate that the indirect pathway is highly dysregulated in early symptomatic HD mice through changes in upstream activity and/or intrinsic properties. Furthermore, we reveal that hyperactivity of external globus pallidus neurons and excessive inhibition of their targets are key features of early HD pathophysiology. Together, these findings could help to inform the development and targeting of viral-based, gene therapeutic approaches for HD.


Asunto(s)
Enfermedad de Huntington , Núcleo Subtalámico , Animales , Ganglios Basales , Femenino , Globo Pálido/fisiología , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Optogenética
18.
J Neurosci ; 42(48): 8997-9010, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36280261

RESUMEN

The central extended amygdala (CEA) and ventral pallidum (VP) are involved in diverse motivated behaviors based on rodent models. These structures are conserved, but expanded, in higher primates, including human. Corticotropin releasing factor (CRF), a canonical "stress molecule" associated with the CEA and VP circuitry across species, is dynamically regulated by stress and drugs of abuse and misuse. CRF's effects on circuits critically depend on its colocation with primary "fast" transmitters, making this crucial for understanding circuit effects. We surveyed the distribution and colocalization of CRF-, VGluT2- (vesicular glutamate transporter 2), and VGAT- (vesicular GABA transporter) mRNA in specific subregions of the CEA and VP in young male monkeys. Although CRF-containing neurons were clustered in the lateral central bed nucleus (BSTLcn), the majority were broadly dispersed throughout other CEA subregions, and the VP. CRF/VGAT-only neurons were highest in the BSTLcn, lateral central amygdala nucleus (CeLcn), and medial central amygdala nucleus (CeM) (74%, 73%, and 85%, respectively). In contrast, lower percentages of CRF/VGAT only neurons populated the sublenticular extended amygdala (SLEAc), ventrolateral bed nucleus (BSTLP), and VP (53%, 54%, 17%, respectively), which had higher complements of CRF/VGAT/VGluT2-labeled neurons (33%, 29%, 67%, respectively). Thus, the majority of CRF-neurons at the "poles" (BSTLcn and CeLcn/CeM) of the CEA are inhibitory, while the "extended" BSTLP and SLEAc subregions, and neighboring VP, have a more complex profile with admixtures of "multiplexed" excitatory CRF neurons. CRF's colocalization with its various fast transmitters is likely circuit-specific, and relevant for understanding CRF actions on specific target sites.SIGNIFICANCE STATEMENT The central extended amygdala (CEA) and ventral pallidum (VP) regulate multiple motivated behaviors through differential downstream projections. The stress neuropeptide corticotropin releasing factor (CRF) is enriched in the CEA, and is thought to "set the gain" through modulatory effects on coexpressed primary transmitters. Using protein and transcript assays in monkey, we found that CRF neurons are broadly and diffusely distributed in CEA and VP. CRF mRNA+ neurons colocalize with VGAT (GABA) and VGluT2 (glutamate) mRNAs in different proportions depending on subregion. CRF mRNA was also coexpressed in a subpopulation of VGAT/VGluT2 mRNA ("multiplexed") cells, which were most prominent in the VP and "pallidal"-like parts of the CEA. Heterogeneous CRF and fast transmitter coexpression across CEA/VP subregions implies circuit-specific effects.


Asunto(s)
Prosencéfalo Basal , Núcleo Amigdalino Central , Animales , Masculino , Prosencéfalo Basal/metabolismo , Núcleo Amigdalino Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Primates , Receptores de Hormona Liberadora de Corticotropina/metabolismo , ARN Mensajero/metabolismo
19.
Glia ; 71(12): 2850-2865, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572007

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disease in elderly people, which is characterized by motor disabilities in PD patients. Nav1.6 is the most abundant subtype of voltage-gated sodium channels (VGSCs) in the brain of adult mammals and rodents. Here we investigated the role of Nav1.6 in the external globus pallidus (GP) involved in the pathogenesis of motor deficits in unilateral 6-OHDA(6-hydroxydopamine)lesioned rats. The results show that Nav1.6 is dramatically increased in reactive astrocytes of the ipsilateral GP in the middle stage, but not different from the control rats in the later stage of the pathological process in 6-OHDA lesioned rats. Furthermore, the down-regulation of Nav1.6 expression in the ipsilateral GP can significantly improve motor deficits in 6-OHDA lesioned rats in the middle stage of the pathological process. The electrophysiological experiments show that the down-regulation of Nav1.6 expression in the ipsilateral GP significantly decreases the abnormal high synchronization between the ipsilateral M1 (the primary motor cortex) and GP in 6-OHDA lesioned rats. Ca2+ imaging reveals that the down-regulation of Nav1.6 expression reduces the intracellular concentration of Ca2+ ([Ca2+ ]i) in primary cultured astrocytes. These findings suggest that the increased Nav1.6 expression of reactive astrocytes in the GP play an important role in the pathogenesis of motor dysfunction in the middle stage in 6-OHDA lesioned rats, which may participate in astrocyte-neuron communication by regulating [Ca2+ ]i of astrocytes, thereby contributing to the formation of abnormal electrical signals of the basal ganglia (BG) in 6-OHDA lesioned rats.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.6 , Enfermedad de Parkinson , Animales , Ratas , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Globo Pálido/metabolismo , Mamíferos , Canal de Sodio Activado por Voltaje NAV1.6/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Ratas Sprague-Dawley
20.
J Neurophysiol ; 129(5): 1010-1020, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37017309

RESUMEN

The spiking activity of basal ganglia neurons can be characterized by summary statistics such as the average firing rate, or by measures of firing patterns, such as burst discharges, or oscillatory fluctuations of firing rates. Many of these features are altered by the presence of parkinsonism. This study examined another distinct attribute of firing activity, i.e., the occurrence of repeating sequences of interspike intervals (ISIs). We studied this feature in extracellular electrophysiological recordings that were made in the basal ganglia of rhesus monkeys, before and after they had been rendered parkinsonian by treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurons in both pallidal segments and in the subthalamic nucleus tended to fire in repeating sequences, typically two ISIs long (i.e., involving three spikes). In recordings that were 5,000 interspike intervals long, 20%-40% of spikes participated in one of many sequences with each ISI replicating the sequence pattern with a timing error of ≤1%. Compared with similar analyses in shuffled representations of the same data, sequences were more common in the original representation of ISIs in all of the tested structures. Induction of parkinsonism reduced the proportion of sequence spikes in the external pallidum but increased it in the subthalamic nucleus. We found no relation between the sequence generation and the firing rate of neurons, and, at most, a weak correlation between sequence generation and the incidence of bursts. We conclude that basal ganglia neurons fire in recognizable sequences of ISIs, whose incidence is influenced by the induction of parkinsonism.NEW & NOTEWORTHY Previous work has shown that the timing of the electrical activity of basal ganglia neurons has nonstochastic properties, resulting in oscillatory firing patterns, or bursting. This article describes another such property in the monkey brain; a surprisingly large proportion of action potentials generated by cells in the extrastriatal basal ganglia are part of precisely timed recurring sequences of spiking events. We also found that the generation of these sequences changes substantially in the parkinsonian state.


Asunto(s)
Trastornos Parkinsonianos , Núcleo Subtalámico , Animales , Ganglios Basales , Neuronas/fisiología , Globo Pálido/fisiología , Potenciales de Acción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA