Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Más filtros

Intervalo de año de publicación
1.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38487847

RESUMEN

Causal discovery is a powerful tool to disclose underlying structures by analyzing purely observational data. Genetic variants can provide useful complementary information for structure learning. Recently, Mendelian randomization (MR) studies have provided abundant marginal causal relationships of traits. Here, we propose a causal network pruning algorithm MRSL (MR-based structure learning algorithm) based on these marginal causal relationships. MRSL combines the graph theory with multivariable MR to learn the conditional causal structure using only genome-wide association analyses (GWAS) summary statistics. Specifically, MRSL utilizes topological sorting to improve the precision of structure learning. It proposes MR-separation instead of d-separation and three candidates of sufficient separating set for MR-separation. The results of simulations revealed that MRSL had up to 2-fold higher F1 score and 100 times faster computing time than other eight competitive methods. Furthermore, we applied MRSL to 26 biomarkers and 44 International Classification of Diseases 10 (ICD10)-defined diseases using GWAS summary data from UK Biobank. The results cover most of the expected causal links that have biological interpretations and several new links supported by clinical case reports or previous observational literatures.


Asunto(s)
Algoritmos , Estudio de Asociación del Genoma Completo , Causalidad , Fenotipo , Transporte de Proteínas , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple
2.
J Neurosci ; 44(7)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38123362

RESUMEN

It is poorly known how Aß and tau accumulations associate at the spatiotemporal level in the in vivo human brain to impact cognitive changes in older adults prior to AD symptoms onset. In this study, we used a graph theory-based spatiotemporal analysis to characterize the cortical patterns of Aß and tau deposits and their relationship with cognitive changes in the Harvard Aging Brain Study (HABS) cohort. We found that the temporal accumulations of interlinked Aß and tau pathology display distinctive spatiotemporal correlations associated with early cognitive decline. Notably, we observed that baseline Aß deposits-Thal amyloid phase Ⅱ-related to future increase of tau deposits, Braak stages Ⅰ-Ⅳ, both displaying linkage to the decline in multi-domain cognitive scores. We also found unimodal tau-to-tau and cognitive impairment associations in broad areas of Braak stages Ⅰ-Ⅳ. The unimodal Aß-to-Aß progressions were not associated with cognitive changes. Our results revealed a multifaceted correlation of the spatiotemporal Aß and tau associations with cognitive decline over time, in which tau-to-tau and tau-Aß interactions, and not Aß independently, might be critical contributors to clinical trajectories toward AD in older adults.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Disfunción Cognitiva , Proteínas tau , Anciano , Humanos , Envejecimiento , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Péptidos beta-Amiloides , Cognición , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
3.
Brief Bioinform ; 25(1)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38189539

RESUMEN

Sequence motif discovery algorithms enhance the identification of novel deoxyribonucleic acid sequences with pivotal biological significance, especially transcription factor (TF)-binding motifs. The advent of assay for transposase-accessible chromatin using sequencing (ATAC-seq) has broadened the toolkit for motif characterization. Nonetheless, prevailing computational approaches have focused on delineating TF-binding footprints, with motif discovery receiving less attention. Herein, we present Cis rEgulatory Motif Influence using de Bruijn Graph (CEMIG), an algorithm leveraging de Bruijn and Hamming distance graph paradigms to predict and map motif sites. Assessment on 129 ATAC-seq datasets from the Cistrome Data Browser demonstrates CEMIG's exceptional performance, surpassing three established methodologies on four evaluative metrics. CEMIG accurately identifies both cell-type-specific and common TF motifs within GM12878 and K562 cell lines, demonstrating its comparative genomic capabilities in the identification of evolutionary conservation and cell-type specificity. In-depth transcriptional and functional genomic studies have validated the functional relevance of CEMIG-identified motifs across various cell types. CEMIG is available at https://github.com/OSU-BMBL/CEMIG, developed in C++ to ensure cross-platform compatibility with Linux, macOS and Windows operating systems.


Asunto(s)
Algoritmos , Secuenciación de Inmunoprecipitación de Cromatina , Benchmarking , Evolución Biológica , Línea Celular
4.
Cereb Cortex ; 34(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38896551

RESUMEN

Network connectivity, as mapped by the whole brain connectome, plays a crucial role in regulating auditory function. Auditory deprivation such as unilateral hearing loss might alter structural network connectivity; however, these potential alterations are poorly understood. Thirty-seven acoustic neuroma patients with unilateral hearing loss (19 left-sided and 18 right-sided) and 19 healthy controls underwent diffusion-weighted and T1-weighted imaging to assess edge strength, node strength, and global efficiency of the structural connectome. Edge strength was estimated by pair-wise normalized streamline density from tractography and connectomics. Node strength and global efficiency were calculated through graph theory analysis of the connectome. Pure-tone audiometry and word recognition scores were used to correlate the degree and duration of unilateral hearing loss with node strength and global efficiency. We demonstrate significantly stronger edge strength and node strength through the visual network, weaker edge strength and node strength in the somatomotor network, and stronger global efficiency in the unilateral hearing loss patients. No discernible correlations were observed between the degree and duration of unilateral hearing loss and the measures of node strength or global efficiency. These findings contribute to our understanding of the role of structural connectivity in hearing by facilitating visual network upregulation and somatomotor network downregulation after unilateral hearing loss.


Asunto(s)
Conectoma , Pérdida Auditiva Unilateral , Humanos , Femenino , Masculino , Pérdida Auditiva Unilateral/diagnóstico por imagen , Pérdida Auditiva Unilateral/fisiopatología , Persona de Mediana Edad , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/patología , Neuroma Acústico/diagnóstico por imagen , Neuroma Acústico/fisiopatología , Neuroma Acústico/patología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Anciano , Imagen de Difusión Tensora , Lateralidad Funcional/fisiología , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Red Nerviosa/patología
5.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436465

RESUMEN

Alzheimer's disease (AD) is associated with functional disruption in gray matter (GM) and structural damage to white matter (WM), but the relationship to functional signal in WM is unknown. We performed the functional connectivity (FC) and graph theory analysis to investigate abnormalities of WM and GM functional networks and corpus callosum among different stages of AD from a publicly available dataset. Compared to the controls, AD group showed significantly decreased FC between the deep WM functional network (WM-FN) and the splenium of corpus callosum, between the sensorimotor/occipital WM-FN and GM visual network, but increased FC between the deep WM-FN and the GM sensorimotor network. In the clinical groups, the global assortativity, modular interaction between occipital WM-FN and visual network, nodal betweenness centrality, degree centrality, and nodal clustering coefficient in WM- and GM-FNs were reduced. However, modular interaction between deep WM-FN and sensorimotor network, and participation coefficients of deep WM-FN and splenium of corpus callosum were increased. These findings revealed the abnormal integration of functional networks in different stages of AD from a novel WM-FNs perspective. The abnormalities of WM functional pathways connect downward to the corpus callosum and upward to the GM are correlated with AD.


Asunto(s)
Enfermedad de Alzheimer , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Corteza Cerebral , Cuerpo Calloso/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen
6.
Cereb Cortex ; 34(3)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436464

RESUMEN

This study aimed to investigate network-level brain functional changes in breast cancer patients and their relationship with fear of cancer recurrence (FCR). Resting-state functional MRI was collected from 43 patients with breast cancer and 40 healthy controls (HCs). Graph theory analyses, whole-brain voxel-wise functional connectivity strength (FCS) analyses and seed-based functional connectivity (FC) analyses were performed to identify connection alterations in breast cancer patients. Correlations between brain functional connections (i.e. FCS and FC) and FCR level were assessed to further reveal the neural mechanisms of FCR in breast cancer patients. Graph theory analyses indicated a decreased clustering coefficient in breast cancer patients compared to HCs (P = 0.04). Patients with breast cancer exhibited significantly higher FCS in both higher-order function networks (frontoparietal, default mode, and dorsal attention systems) and primary somatomotor networks. Among the hyperconnected regions in breast cancer, the left inferior frontal operculum demonstrated a significant positive correlation with FCR. Our findings suggest that breast cancer patients exhibit less segregation of brain function, and the left inferior frontal operculum is a key region associated with FCR. This study offers insights into the neural mechanisms of FCR in breast cancer patients at the level of brain connectome.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Conectoma , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Miedo
7.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38715406

RESUMEN

Presbycusis has been reported as related to cognitive decline, but its underlying neurophysiological mechanism is still unclear. This study aimed to investigate the relationship between metabolite levels, cognitive function, and node characteristics in presbycusis based on graph theory methods. Eighty-four elderly individuals with presbycusis and 63 age-matched normal hearing controls underwent magnetic resonance spectroscopy, functional magnetic resonance imaging scans, audiological assessment, and cognitive assessment. Compared with the normal hearing group, presbycusis patients exhibited reduced gamma-aminobutyric acid and glutamate levels in the auditory region, increased nodal characteristics in the temporal lobe and precuneus, as well as decreased nodal characteristics in the superior occipital gyrus and medial orbital. The right gamma-aminobutyric acid levels were negatively correlated with the degree centrality in the right precuneus and the executive function. Degree centrality in the right precuneus exhibited significant correlations with information processing speed and executive function, while degree centrality in the left medial orbital demonstrated a negative association with speech recognition ability. The degree centrality and node efficiency in the superior occipital gyrus exhibited a negative association with hearing loss and speech recognition ability, respectively. These observed changes indicate alterations in metabolite levels and reorganization patterns at the brain network level after auditory deprivation.


Asunto(s)
Disfunción Cognitiva , Imagen por Resonancia Magnética , Presbiacusia , Humanos , Masculino , Femenino , Presbiacusia/diagnóstico por imagen , Presbiacusia/metabolismo , Presbiacusia/fisiopatología , Anciano , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Espectroscopía de Resonancia Magnética , Ácido Glutámico/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Persona de Mediana Edad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
8.
Dev Dyn ; 253(8): 711-721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38169311

RESUMEN

BACKGROUND: Changes in epithelial cell shape reflects optimal cell packing and the minimization of surface free energy, but also cell-cell interactions, cell proliferation, and cytoskeletal rearrangements. RESULTS: Here, we studied the structure of the rat pleura in the first 15 days after birth. After pleural isolation and image segmentation, the analysis demonstrated a progression of epithelial order from postnatal day 1 (P1) to P15. The cells with the largest surface area and greatest shape variability were observed at P1. In contrast, the cells with the smallest surface area and most shape consistency were observed at P15. A comparison of polygonal cell geometries demonstrated progressive optimization with an increase in the number of hexagons (six-sided) as well as five-sided and seven-sided polygons. Analysis of the epithelial organization with Voronoi tessellations and graphlet motif frequencies demonstrated a developmental path strikingly distinct from mathematical and natural reference paths. Graph Theory analysis of cell connectivity demonstrated a progressive decrease in network heterogeneity and clustering coefficient from P1 to P15. CONCLUSIONS: We conclude that the rat pleura undergoes a striking change in pleural structure from P1 to P15. Further, a geometric and network-based approach can provide a quantitative characterization of these developmental changes.


Asunto(s)
Pleura , Animales , Ratas , Pleura/citología , Células Epiteliales/citología , Forma de la Célula/fisiología , Animales Recién Nacidos , Ratas Sprague-Dawley
9.
Neuroimage ; 296: 120673, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38851550

RESUMEN

Morphological features sourced from structural magnetic resonance imaging can be used to infer human brain connectivity. Although integrating different morphological features may theoretically be beneficial for obtaining more precise morphological connectivity networks (MCNs), the empirical evidence to support this supposition is scarce. Moreover, the incorporation of different morphological features remains an open question. In this study, we proposed a method to construct cortical MCNs based on multiple morphological features. Specifically, we adopted a multi-dimensional kernel density estimation algorithm to fit regional joint probability distributions (PDs) from different combinations of four morphological features, and estimated inter-regional similarity in the joint PDs via Jensen-Shannon divergence. We evaluated the method by comparing the resultant MCNs with those built based on different single morphological features in terms of topological organization, test-retest reliability, biological plausibility, and behavioral and cognitive relevance. We found that, compared to MCNs built based on different single morphological features, MCNs derived from multiple morphological features displayed less segregated, but more integrated network architecture and different hubs, had higher test-retest reliability, encompassed larger proportions of inter-hemispheric edges and edges between brain regions within the same cytoarchitectonic class, and explained more inter-individual variance in behavior and cognition. These findings were largely reproducible when different brain atlases were used for cortical parcellation. Further analysis of macaque MCNs revealed weak, but significant correlations with axonal connectivity from tract-tracing, independent of the number of morphological features. Altogether, this paper proposes a new method for integrating different morphological features, which will be beneficial for constructing MCNs.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Adulto , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/anatomía & histología , Conectoma/métodos , Algoritmos , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos , Mapeo Encefálico/métodos
10.
Neuroimage ; 297: 120749, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39033787

RESUMEN

Differential diagnosis of acute loss of consciousness (LOC) is crucial due to the need for different therapeutic strategies despite similar clinical presentations among etiologies such as nonconvulsive status epilepticus, metabolic encephalopathy, and benzodiazepine intoxication. While altered functional connectivity (FC) plays a pivotal role in the pathophysiology of LOC, there has been a lack of efforts to develop differential diagnosis artificial intelligence (AI) models that feature the distinctive FC change patterns specific to each LOC cause. Three approaches were applied for extracting features for the AI models: three-dimensional FC adjacency matrices, vectorized FC values, and graph theoretical measurements. Deep learning using convolutional neural networks (CNN) and various machine learning algorithms were implemented to compare classification accuracy using electroencephalography (EEG) data with different epoch sizes. The CNN model using FC adjacency matrices achieved the highest accuracy with an AUC of 0.905, with 20-s epoch data being optimal for classifying the different LOC causes. The high accuracy of the CNN model was maintained in a prospective cohort. Key distinguishing features among the LOC causes were found in the delta and theta brain wave bands. This research advances the understanding of LOC's underlying mechanisms and shows promise for enhancing diagnosis and treatment selection. Moreover, the AI models can provide accurate LOC differentiation with a relatively small amount of EEG data in 20-s epochs, which may be clinically useful.


Asunto(s)
Inteligencia Artificial , Electroencefalografía , Inconsciencia , Humanos , Electroencefalografía/métodos , Inconsciencia/fisiopatología , Femenino , Diagnóstico Diferencial , Masculino , Persona de Mediana Edad , Adulto , Redes Neurales de la Computación , Aprendizaje Profundo , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Anciano , Aprendizaje Automático
11.
Neuroimage ; 297: 120740, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047590

RESUMEN

Modular dynamic graph theory metrics effectively capture the patterns of dynamic information interaction during human brain development. While existing research has employed modular algorithms to examine the overall impact of dynamic changes in community structure throughout development, there is a notable gap in understanding the cross-community dynamic changes within different functional networks during early childhood and their potential contributions to the efficiency of brain information transmission. This study seeks to address this gap by tracing the trajectories of cross-community structural changes within early childhood functional networks and modeling their contributions to information transmission efficiency. We analyzed 194 functional imaging scans from 83 children aged 2 to 8 years, who participated in passive viewing functional magnetic resonance imaging sessions. Utilizing sliding windows and modular algorithms, we evaluated three spatiotemporal metrics-temporal flexibility, spatiotemporal diversity, and within-community spatiotemporal diversity-and four centrality metrics: within-community degree centrality, eigenvector centrality, between-community degree centrality, and between-community eigenvector centrality. Mixed-effects linear models revealed significant age-related increases in the temporal flexibility of the default mode network (DMN), executive control network (ECN), and salience network (SN), indicating frequent adjustments in community structure within these networks during early childhood. Additionally, the spatiotemporal diversity of the SN also displayed significant age-related increases, highlighting its broad pattern of cross-community dynamic interactions. Conversely, within-community spatiotemporal diversity in the language network exhibited significant age-related decreases, reflecting the network's gradual functional specialization. Furthermore, our findings indicated significant age-related increases in between-community degree centrality across the DMN, ECN, SN, language network, and dorsal attention network, while between-community eigenvector centrality also increased significantly for the DMN, ECN, and SN. However, within-community eigenvector centrality remained stable across all functional networks during early childhood. These results suggest that while centrality of cross-community interactions in early childhood functional networks increases, centrality within communities remains stable. Finally, mediation analysis was conducted to explore the relationships between age, brain dynamic graph metrics, and both global and local efficiency based on community structure. The results indicated that the dynamic graph metrics of the SN primarily mediated the relationship between age and the decrease in global efficiency, while those of the DMN, language network, ECN, dorsal attention network, and SN primarily mediated the relationship between age and the increase in local efficiency. This pattern suggests a developmental trajectory in early childhood from global information integration to local information segregation, with the SN playing a pivotal role in this transformation. This study provides novel insights into the mechanisms by which early childhood brain functional development impacts information transmission efficiency through cross-community adjustments in functional networks.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Red Nerviosa , Humanos , Preescolar , Niño , Masculino , Femenino , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Encéfalo/crecimiento & desarrollo , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Desarrollo Infantil/fisiología , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiología , Conectoma/métodos
12.
Neuroimage ; 290: 120555, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38447683

RESUMEN

Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Humanos , Enfermedad de Alzheimer/patología , Conectoma/métodos , Encéfalo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Atrofia/patología , Hierro
13.
Eur J Neurosci ; 59(6): 1332-1347, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105486

RESUMEN

Alzheimer's disease (AD) is associated with abnormal accumulations of hyperphosphorylated tau and amyloid-ß proteins, resulting in unique patterns of atrophy in the brain. We aimed to elucidate some characteristics of the AD's morphometric networks constructed by associating different morphometric features among brain areas and evaluating their relationship to Mini-Mental State Examination total score and age. Three-dimensional T1-weighted (3DT1) image data scanned by the same 1.5T magnetic resonance imaging (MRI) were obtained from 62 AD patients and 41 healthy controls (HCs) and were analysed by using FreeSurfer. The associations of the extracted six morphometric features between regions were estimated by correlation coefficients. The global and local graph theoretical measures for this network were evaluated. Associations between graph theoretical measures and age, sex and cognition were evaluated by multiple regression analysis in each group. Global measures of integration: global efficiency and mean information centrality were significantly higher in AD patients. Local measures of integration: node global efficiency and information centrality were significantly higher in the entorhinal cortex, fusiform gyrus and posterior cingulate cortex of AD patients but only in the left hemisphere. All global measures were correlated with age in AD patients but not in HCs. The information centrality was associated with age in AD's broad brain regions. Our results showed that altered morphometric networks due to AD are left-hemisphere dominant, suggesting that AD pathogenesis has a left-right asymmetry. Ageing has a unique impact on the morphometric networks in AD patients. The information centrality is a sensitive graph theoretical measure to detect this association.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Mapeo Encefálico , Envejecimiento , Imagen por Resonancia Magnética/métodos
14.
Hum Brain Mapp ; 45(5): e26650, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553863

RESUMEN

Healthy aging is associated with a heterogeneous decline across cognitive functions, typically observed between language comprehension and language production (LP). Examining resting-state fMRI and neuropsychological data from 628 healthy adults (age 18-88) from the CamCAN cohort, we performed state-of-the-art graph theoretical analysis to uncover the neural mechanisms underlying this variability. At the cognitive level, our findings suggest that LP is not an isolated function but is modulated throughout the lifespan by the extent of inter-cognitive synergy between semantic and domain-general processes. At the cerebral level, we show that default mode network (DMN) suppression coupled with fronto-parietal network (FPN) integration is the way for the brain to compensate for the effects of dedifferentiation at a minimal cost, efficiently mitigating the age-related decline in LP. Relatedly, reduced DMN suppression in midlife could compromise the ability to manage the cost of FPN integration. This may prompt older adults to adopt a more cost-efficient compensatory strategy that maintains global homeostasis at the expense of LP performances. Taken together, we propose that midlife represents a critical neurocognitive juncture that signifies the onset of LP decline, as older adults gradually lose control over semantic representations. We summarize our findings in a novel synergistic, economical, nonlinear, emergent, cognitive aging model, integrating connectomic and cognitive dimensions within a complex system perspective.


Asunto(s)
Conectoma , Longevidad , Humanos , Anciano , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano de 80 o más Años , Encéfalo/diagnóstico por imagen , Cognición , Mapeo Encefálico , Lenguaje , Imagen por Resonancia Magnética , Vías Nerviosas
15.
Hum Brain Mapp ; 45(1): e26563, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224534

RESUMEN

Neuroimaging studies have demonstrated extensive brain functional alterations in cognitive and motor functional areas in Type 2 diabetes mellitus (T2DM) with diabetic peripheral neuropathy (DPN), suggesting potential alterations in large-scale brain networks related to DPN and associated cognition and motor dysfunction. In this study, using resting-state functional connectivity (FC) and graph theory computational approaches, we investigated the topological disruptions of brain functional networks in 28 DPN, 43 T2DM without DPN (NDPN), and 32 healthy controls (HCs) and examined the correlations between altered network topological metrics and cognitive/motor function parameters in T2DM. For global topology, NDPN exhibited a significantly decreased shortest path length compared with HCs, suggesting increased efficient global integration. For regional topology, DPN and NDPN had separated topological reorganization of functional hubs compared with HCs. In addition, DPN showed significantly decreased nodal efficiency (Enodal ), mainly in the bilateral superior occipital gyrus (SOG), right cuneus, middle temporal gyrus (MTG), and left inferior parietal gyrus (IPL), compared with NDPN, whereas NDPN showed significantly increased Enodal compared with HCs. Intriguingly, in T2DM patients, the Enodal of the right SOG was significantly negatively correlated with Toronto Clinical Scoring System scores, while the Enodal of the right postcentral gyrus (PoCG) and MTG were significantly positively correlated with Montreal Cognitive Assessment scores. Conclusively, DPN and NDPN patients had segregated disruptions in the brain functional network, which were related to cognition and motion dysfunctions. Our findings provide a theoretical basis for understanding the neurophysiological mechanism of DPN and its effective prevention and treatment in T2DM.


Asunto(s)
Encefalopatías , Diabetes Mellitus Tipo 2 , Neuropatías Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico por imagen , Neuropatías Diabéticas/diagnóstico por imagen , Cognición , Encéfalo/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos
16.
Hum Brain Mapp ; 45(1): e26566, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224535

RESUMEN

Both plasma biomarkers and brain network topology have shown great potential in the early diagnosis of Alzheimer's disease (AD). However, the specific associations between plasma AD biomarkers, structural network topology, and cognition across the AD continuum have yet to be fully elucidated. This retrospective study evaluated participants from the Sino Longitudinal Study of Cognitive Decline cohort between September 2009 and October 2022 with available blood samples or 3.0-T MRI brain scans. Plasma biomarker levels were measured using the Single Molecule Array platform, including ß-amyloid (Aß), phosphorylated tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). The topological structure of brain white matter was assessed using network efficiency. Trend analyses were carried out to evaluate the alterations of the plasma markers and network efficiency with AD progression. Correlation and mediation analyses were conducted to further explore the relationships among plasma markers, network efficiency, and cognitive performance across the AD continuum. Among the plasma markers, GFAP emerged as the most sensitive marker (linear trend: t = 11.164, p = 3.59 × 10-24 ; quadratic trend: t = 7.708, p = 2.25 × 10-13 ; adjusted R2 = 0.475), followed by NfL (linear trend: t = 6.542, p = 2.9 × 10-10 ; quadratic trend: t = 3.896, p = 1.22 × 10-4 ; adjusted R2 = 0.330), p-tau181 (linear trend: t = 8.452, p = 1.61 × 10-15 ; quadratic trend: t = 6.316, p = 1.05 × 10-9 ; adjusted R2 = 0.346) and Aß42/Aß40 (linear trend: t = -3.257, p = 1.27 × 10-3 ; quadratic trend: t = -1.662, p = 9.76 × 10-2 ; adjusted R2 = 0.101). Local efficiency decreased in brain regions across the frontal and temporal cortex and striatum. The principal component of local efficiency within these regions was correlated with GFAP (Pearson's R = -0.61, p = 6.3 × 10-7 ), NfL (R = -0.57, p = 6.4 × 10-6 ), and p-tau181 (R = -0.48, p = 2.0 × 10-4 ). Moreover, network efficiency mediated the relationship between general cognition and GFAP (ab = -0.224, 95% confidence interval [CI] = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA) or NfL (ab = -0.224, 95% CI = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA). Our findings suggest that network efficiency mediates the association between plasma biomarkers, specifically GFAP and NfL, and cognitive performance in the context of AD progression, thus highlighting the potential utility of network-plasma approaches for early detection, monitoring, and intervention strategies in the management of AD.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Sustancia Blanca , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Sustancia Blanca/diagnóstico por imagen , Estudios Retrospectivos , Péptidos beta-Amiloides , Biomarcadores , Proteínas tau
17.
Hum Brain Mapp ; 45(3): e26626, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38375916

RESUMEN

The brain structural network derived from diffusion magnetic resonance imaging (dMRI) reflects the white matter connections between brain regions, which can quantitatively describe the anatomical connection pattern of the entire brain. The development of structural brain connectome leads to the emergence of a large number of dMRI processing packages and network analysis toolboxes. However, the fully automated network analysis based on dMRI data remains challenging. In this study, we developed a cross-platform MATLAB toolbox named "Diffusion Connectome Pipeline" (DCP) for automatically constructing brain structural networks and calculating topological attributes of the networks. The toolbox integrates a few developed packages, including FSL, Diffusion Toolkit, SPM, Camino, MRtrix3, and MRIcron. It can process raw dMRI data collected from any number of participants, and it is also compatible with preprocessed files from public datasets such as HCP and UK Biobank. Moreover, a friendly graphical user interface allows users to configure their processing pipeline without any programming. To prove the capacity and validity of the DCP, two tests were conducted with using DCP. The results showed that DCP can reproduce the findings in our previous studies. However, there are some limitations of DCP, such as relying on MATLAB and being unable to fixel-based metrics weighted network. Despite these limitations, overall, the DCP software provides a standardized, fully automated computational workflow for white matter network construction and analysis, which is beneficial for advancing future human brain connectomics application research.


Asunto(s)
Conectoma , Sustancia Blanca , Humanos , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen
18.
J Pediatr ; 274: 114201, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032768

RESUMEN

OBJECTIVE: To determine the association between neighborhood disadvantage (ND) and functional brain development of in utero fetuses. STUDY DESIGN: We conducted an observational study using Social Vulnerability Index (SVI) scores to assess the impact of ND on a prospectively recruited sample of healthy pregnant women from Washington, DC. Using 79 functional magnetic resonance imaging scans from 68 healthy pregnancies at a mean gestational age of 33.12 weeks, we characterized the overall functional brain network structure using a graph metric approach. We used linear mixed effects models to assess the relationship between SVI and gestational age on 5 graph metrics, adjusting for multiple scans. RESULTS: Exposure to greater ND was associated with less well integrated functional brain networks, as observed by longer characteristic path lengths and diminished global efficiency (GE), as well as diminished small world propensity (SWP). Across gestational ages, however, the association between SVI and network integration diminished to a negligible relationship in the third trimester. Conversely, SWP was significant across pregnancy, but the relationship changed such that there was a negative association with SWP earlier in the second trimester that inverted around the transition to the third trimester to a positive association. CONCLUSIONS: These data directly connect ND and altered functional brain maturation in fetuses. Our results suggest that, even before birth, proximity to environmental stressors in the wider neighborhood environment are associated with altered brain development.

19.
Phys Biol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39074502

RESUMEN

Analyzing transcription data requires intensive statistical analysis to obtain useful biological information and knowledge. A significant portion of this data is affected by random noise or even noise intrinsic to the modeling of the experiment. Without robust treatment, the data might not be explored thoroughly, and incorrect conclusions could be drawn. Examining the correlation between gene expression profiles is one way bioinformaticians extract information from transcriptomic experiments. However, the correlation measurements traditionally used have worrisome shortcomings that need to be addressed. This paper compares five already published and experimented with correlation measurements to the newly developed coincidence index, a similarity measurement that combines Jaccard and interiority indexes and generalizes them to be applied to vectors containing real values. We used microarray and RNA-Seq data from the archaeon Halobacterium salinarum and the bacterium Escherichia coli, respectively, to evaluate the capacity of each correlation/similarity measurement. The utilized method explores the co-expressed metabolic pathways by measuring the correlations between the expression levels of enzymes that share metabolites, represented in the form of a weighted graph. It then searches for local maxima in this graph using a simulated annealing algorithm. We demonstrate that the coincidence index extracts larger, more comprehensive, and more statistically significant pathways for microarray experiments. In RNA-Seq experiments, the results are more limited, but the coincidence index managed the largest percentage of significant components in the graph.

20.
J Nutr ; 154(8): 2599-2607, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914228

RESUMEN

BACKGROUND: Although reducing meat consumption is becoming increasingly popular in Western countries, such a transition to a sustainable diet may pose some nutritional risks. OBJECTIVES: We aim to analyze the pathways for reaching a low-meat healthy diet and the changes in other food categories needed to rapidly decrease total red meat consumption. METHODS: We used a recently developed method based on graph theory to represent all possible pathways of stepwise changes that avoid nutritional deficiencies toward a target healthy diet. Initial and target diets were defined as the daily consumption of 33 food groups. For each sex, 3 initial diets were taken from the French representative survey third individual and national study on food consumption survey as the mean observed diet and low (first quintile) and high (fifth quintile) meat consumption. Target diets were identified using multicriteria optimization to minimize the long-term health risk (HR) of chronic diseases while ensuring nutritional adequacy. The Dijkstra algorithm was used to identify the optimal pathways between the initial and target diets, with the aim of reducing meat consumption as quickly as possible and thus minimizing long-term HRs. RESULTS: Unprocessed red meat was easily minimized in the first steps of the pathways regardless of sex and initial level of meat consumption. However, processed meat could only be decreased later and required prior changes such as increases in fruit, vegetables, and oily fish. During total red meat minimization in females, securing adequate intakes of bioavailable iron had the most substantial impact on the other dietary changes needed. CONCLUSIONS: Immediate reduction of red meat consumption is possible on the pathway to a healthy diet that avoids any nutrient deficiency. However, early increases in fruit, vegetables, and fish are required before minimizing total red meat early in the diet.


Asunto(s)
Dieta , Carne Roja , Humanos , Masculino , Femenino , Dieta Saludable , Adulto , Francia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA