Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37177401

RESUMEN

Mobile ad hoc networks (MANETs) are self-configuring networks of wireless nodes, i.e., mobile devices. Since communications in MANETs occur via wireless channels, it is of significance to secure communications among wireless and mobile nodes. Group key management, as a widely used method for securing group communications, has potentially been used in MANETs for years. Most recently, a secure receiver-unrestricted group key management scheme for MANETs has been proposed, which is used to establish a secure channel among a group of wireless nodes without a trusted dealer, which has some advantages such as eliminating the certificate management problem and receiver restriction. However, a formal security analysis of this scheme is still lacking. Therefore, in this paper, we propose the complete security proof to demonstrate that the scheme satisfies the essential security properties including authentication, message confidentiality, known-key security and dynamic secrecy. We also give a brief discussion about the efficiency of the scheme.

2.
Sensors (Basel) ; 20(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126693

RESUMEN

Safety applications based on vehicle-to-everything (V2X) communications can significantly enhance road safety and reduce traffic fatalities. Ensuring the security and privacy of the vehicular network is essential for the widespread adoption of V2X communications for commercial use. V2X safety and service applications require periodic broadcast communications among all the vehicles. However, compared to unicast communication, it is extremely challenging to provide broadcast communication with network security requirements such as confidentiality, in infotainment contents distribution, sensor data sharing, and security credentials management services. To address the providing confidentiality of vehicle-to-vehicle (V2V) broadcasting, we propose a group key management and message encryption method that is secure, lightweight, and scalable. The proposed group key management method can efficiently handle various scenarios like a node joining or leaving the group, with scalable rekeying algorithms. It employs a distributed and scalable architecture that offers several advantages such as the reduction of the key management overhead and the enhancement of the security level by keeping the key sizes with large networks. In addition, the proposed method employs a lightweight matrix-based encryption algorithm that can be easily applicable with the proposed group key management method. Further, we have implemented the proposed method and evaluated the performance using a V2V network simulator with several networks of highly dynamic group members. The simulation results show that the proposed method can reduce computation time for group key generation and message encryption by more than 80% compared to existing methods.

3.
Sensors (Basel) ; 19(8)2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31013664

RESUMEN

Wireless Sensor Network (WSN) is a growing area of research in terms of applications, life enhancement and security. Research interests vary from enhancing network performance and decreasing overhead computation to solving security flaws. Secure Group Communication (SGC) is gaining traction in the world of network security. Proposed solutions in this area focus on generating, sharing and distributing a group key among all group members in a timely manner to secure their communication and reduce the computation overhead. This method of security is called SGC-Shared Key. In this paper, we introduce a simple and effective way to secure the network through Hashed IDs (SGC-HIDs). In our proposed method, we distribute a shared key among the group of nodes in the network. Each node would have the ability to compute the group key each time it needs to. We provide a security analysis for our method as well as a performance evaluation. Moreover, to the best of our knowledge, we present for the first time a definition of joining or leaving attack. Furthermore, we describe several types of such an attack as well as the potential security impacts that occur when a network is being attacked.

4.
Sensors (Basel) ; 18(9)2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30200382

RESUMEN

Autonomous vehicular clouds, as the combination of cloud computing and conventional vehicular ad hoc networks, will provide abundant resources and services by sharing under-utilized resources of future high-end vehicles such as computing power, storage and internet connectivity. Autonomous vehicular clouds will have significant impact if widely implemented in the intelligent transportation system. However, security and privacy issues are still big challenges in autonomous vehicular clouds. In this paper, after analyzing the particularity of autonomous vehicular clouds, we implement a two-layered architecture, in which vehicles are self-organized without the help of roadside units. Then based on the architecture, we put forward an effective key management protocol to distribute a group key efficiently and also provide the authentication and confidentiality that lots of current secure schemes ignore. In addition, according to the different scenarios and security levels we categorize the way of message transmitting into three kinds. At last, with performance evaluations, the proposed protocol can perform more efficiently than other well-known available schemes.

5.
Sensors (Basel) ; 18(11)2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441790

RESUMEN

The wireless body area network (WBAN) is considered as one of the emerging wireless techniques in the healthcare system. Typical WBAN sensors, especially implantable sensors, have limited power capability, which restricts their wide applications in the medical environment. In addition, it is necessary for the healthcare center (HC) to broadcast significant notifications to different patient groups. Considering the above issues, in this paper, the novel practical WBAN system model with group message broadcasting is built. Subsequently, a secure and efficient group key management protocol with cooperative sensor association is proposed. In the proposed protocol, the Chinese remainder theorem (CRT) is employed for group key management between HC and the personal controller (PC), which also supports batch key updating. The proposed sensor association scheme is motivated by coded cooperative data exchange (CCDE). The formal security proofs are presented, indicating that the proposed protocol can achieve the desired security properties. Moreover, performance analysis demonstrates that the proposed protocol is efficient compared with state-of-the-art group key management protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA