Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Semin Immunol ; 69: 101805, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37429234

RESUMEN

Pathogenic microbes invade the human body and trigger a host immune response to defend against the infection. In response, host-adapted pathogens employ numerous virulence strategies to overcome host defense mechanisms. As a result, the interaction between the host and pathogen is a dynamic process that shapes the evolution of the host's immune response. Among the immune responses against intracellular bacteria, pyroptosis, a lytic form of cell death, is a crucial mechanism that eliminates replicative niches for intracellular pathogens and modulates the immune system by releasing danger signals. This review focuses on the role of pyroptosis in combating intracellular bacterial infection. We examine the cell type specific roles of pyroptosis in neutrophils and intestinal epithelial cells. We discuss the regulatory mechanisms of pyroptosis, including its modulation by autophagy and interferon-inducible GTPases. Furthermore, we highlight that while host-adapted pathogens can often subvert pyroptosis, environmental microbes are effectively eliminated by pyroptosis.


Asunto(s)
Infecciones Bacterianas , Piroptosis , Humanos , Muerte Celular , Neutrófilos , Bacterias
2.
J Transl Med ; 22(1): 11, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167153

RESUMEN

Guanylate binding protein 1 (GBP1) is the most concerned member of the GBP family, which has a series of effects such as anti-infection and anti-angiogenesis. Its role in malignant tumors including cervical cancer is still controversial. We aim to explore the effects of GBP1 on cervical cancer through bioinformatics and related experiments. In this study, we first found that GBP1 was generally expressed in cervical cancer in various online databases and was closely related to immune invasion. Secondly, we used multicolor immunofluorescence technology to verify the expression of GBP1 in cervical cancer tissues and its relationship with immune invasion, and explored its relationship with the prognosis of patients with cervical cancer. Knockdown and overexpression assays of GBP1 in vitro were used to prove GBP1 as a potential oncogene of cervical cancer, and its carcinogenicity was verified by in vivo experiment. In order to explore the potential mechanism of GBP1 in promoting cancer, RNA-seq was performed on GBP1 overexpression and knockdown expression cell lines, and GBP1 knockdown and overexpression were found to be associated with many RNA alternative splicing events, suggesting that GBP1 maybe a RNA binding protein (RBP) which affect the biological characteristics of cervical cancer cells through the alternative splicing pathway. However, the later RNA binding protein immunoprecipitation (RIP) assay proved that GBP1 was not a direct alternative splicing factor, while the co-immunoprecipitation (CoIP)-mass spectroscopy (MS) assay combined with protein protein interaction (PPI) analysis proved that 8 alternative splicing factors including Heterogeneous Nuclear Ribonucleoprotein K (HNRNPK) were interacting proteins of GBP1. Combined with the existing reports and the results of RNA-seq alternative splicing analysis, it is speculated that GBP1 may regulate the alternative splicing of CD44 protein by binding to interacting protein-HNRNPK, and thus play a role in promoting cancer in cervical cancer.


Asunto(s)
Proteínas de Unión al GTP , Neoplasias del Cuello Uterino , Femenino , Humanos , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Oncogenes , Proteínas de Unión al ARN , Neoplasias del Cuello Uterino/genética
3.
J Med Virol ; 96(6): e29730, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38860570

RESUMEN

Hantaan virus (HTNV) infection can cause hemorrhagic fever with renal syndrome (HFRS) in humans, and currently, there are no long-standing protective vaccines or specific antivirals available. Guanylate-binding protein 1 (GBP1) is an interferon-stimulated gene that defends against various pathogen infections. However, the function of GBP1 in HTNV infection remains unknown. Here, we describe how GBP1 prevents HTNV infection by obstructing virus entry. We found that HTNV infection induced GBP1 expression and that overexpression of GBP1 inhibited HTNV infection, while knockout of GBP1 had the opposite effect. Interestingly, GBP1 did not affect interferon (IFN) signaling during HTNV infection. Instead, GBP1 prevented HTNV from entering cells through clathrin-mediated endocytosis (CME). We also discovered that GBP1 specifically interacted with actin but not dynamin 2 (DNM2) and made it difficult for DNM2 to be recruited by actin, which may account for the suppression of CME during HTNV infection. These findings establish an antiviral role for GBP1 in inhibiting HTNV infection and help us better understand how GBP1 regulates HTNV entry and could potentially aid in developing treatments for this virus.


Asunto(s)
Endocitosis , Proteínas de Unión al GTP , Virus Hantaan , Internalización del Virus , Humanos , Actinas/metabolismo , Línea Celular , Dinamina II/metabolismo , Dinamina II/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Virus Hantaan/fisiología , Células HEK293 , Fiebre Hemorrágica con Síndrome Renal/virología , Interacciones Huésped-Patógeno
4.
Microvasc Res ; 154: 104689, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38636926

RESUMEN

Pathological retinal angiogenesis is not only the hallmark of retinopathies, but also a major cause of blindness. Guanylate binding protein 2 (GBP2) has been reported to be associated with retinal diseases such as diabetic retinopathy and hypoxic retinopathy. However, GBP2-mediated pathological retinal angiogenesis remains largely unknown. The present study aimed to investigate the role of GBP2 in pathological retinal angiogenesis and its underlying molecular mechanism. In this study, we established oxygen-induced retinopathy (OIR) mice model for in vivo study and hypoxia-induced angiogenesis in ARPE-19 cells for in vitro study. We demonstrated that GBP2 expression was markedly downregulated in the retina of mice with OIR and ARPE-19 cells treated with hypoxia, which was associated with pathological retinal angiogenesis. The regulatory mechanism of GBP2 in ARPE-19 cells was studied by GBP2 silencing and overexpression. The regulatory mechanism of GBP2 in the retina was investigated by overexpressing GBP2 in the retina of OIR mice. Mechanistically, GBP2 downregulated the expression and secretion of vascular endothelial growth factor (VEGFA) in ARPE-19 cells and retina of OIR mice. Interestingly, overexpression of GBP2 significantly inhibited neovascularization in OIR mice, conditioned medium of GBP2 overexpressing ARPE-19 cells inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, we confirmed that GBP2 downregulated VEGFA expression and angiogenesis by inhibiting the AKT/mTOR signaling pathway. Taken together, we concluded that GBP2 inhibited pathological retinal angiogenesis via the AKT/mTOR/VEGFA axis, thereby suggesting that GBP2 may be a therapeutic target for pathological retinal angiogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Unión al GTP , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Neovascularización Retiniana , Vasos Retinianos , Transducción de Señal , Serina-Treonina Quinasas TOR , Factor A de Crecimiento Endotelial Vascular , Animales , Humanos , Ratones , Hipoxia de la Célula , Línea Celular , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Neovascularización Retiniana/genética , Neovascularización Retiniana/prevención & control , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética
5.
BMC Womens Health ; 24(1): 240, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622605

RESUMEN

BACKGROUND: Human papillomavirus (HPV) infection is an important factor leading to cervical cell abnormalities. 90% of cervical cancers are closely associated with persistent infection of high-risk HPV, with the highest correlation with HPV16 and 18. Currently available vaccines and antivirals have limited effectiveness and coverage. Guanylate binding protein 1 (GBP1) was induced by interferon gamma and involved in many important cellular processes such as clearance of various microbial pathogens. However, whether GBP1 can inhibit human papillomavirus infection is unclear. RESULTS: In this study, we found that GBP1 can effectively degrade HPV18 E6, possibly through its GTPase activity or other pathways, and E6 protein degrades GBP1 through the ubiquitin-proteasome pathway to achieve immune escape. CONCLUSION: Therefore, GBP1 is an effector of IFN-γ anti-HPV activity. Our findings provided new insights into the treatment of HPV 18 infections.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Proteínas de Unión al GTP , Papillomavirus Humano 18 , Interferón gamma/farmacología
6.
Int Endod J ; 57(2): 208-218, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050666

RESUMEN

AIM: Guanylate-binding protein 5 (GBP5) is an interferon (IFN)-inducible GTPase that plays a crucial role in the cell-autonomous immune response against microbial infections. In this study, we investigated the immunoregulatory role of GBP5 in the pathogenesis of dental pulpitis. METHODOLOGY: Gene-set enrichment analysis (GSEA) was utilized to evaluate the IFN-γ signalling pathway, and the differential expression of GBP mRNA in normal versus inflamed dental pulp tissues was screened, based on Gene Expression Omnibus (GEO) datasets associated with pulpitis. Both normal pulp tissues and inflamed pulp tissues were used for experiments. The expression of IFNs and GBPs was determined by qRT-PCR. Immunoblotting and double immunofluorescence were performed to examine the cellular localization of GBP5 in dental pulp tissues. For the functional studies, IFN-γ priming or lentivirus vector-delivered shRNA was used to, respectively, overexpress or knock down endogenous GBP5 expression in human dental pulp stem cells (HDPSCs). Subsequently, LPS was used to stimulate HDPSCs (overexpressing or with knocked-down GBP5) to establish an in vitro model of inflammation. qRT-PCR and ELISA were employed to examine the expression of proinflammatory cytokines (IL-6, IL-8 and IL-1ß) and cyclooxygenase 2 (COX2). Every experiment has three times of biological replicates and three technical replicates, respectively. Statistical analysis was performed using the Student's t-test and one-way ANOVA, and a p-value of <.05 was considered statistically significant. RESULTS: GSEA analysis based on the GEO dataset revealed a significant activation of the IFN-γ signalling pathway in the human pulpitis group. Among the human GBPs evaluated, GBP5 was selectively upregulated in inflamed dental pulp tissues and predominantly expressed in dental pulp cells. In vitro experiments demonstrated that IFN-γ robustly induced the expression of GBP5 in HDPSCs. Knockdown of GBP5 expression in HDPSCs significantly amplified the LPS-induced upregulation of inflammatory mediators (IL-6, IL-8, IL-1ß and COX2) both with and without IFN-γ priming. CONCLUSION: Our findings demonstrated that GBP5 partook in the pathogenesis of dental pulpitis. The involvement of GBP5 in pulpitis appeared to coordinate the regulation of inflammatory cytokines. Knockdown of GBP5 contributed to the exacerbation of LPS-mediated inflammation.


Asunto(s)
Pulpitis , Humanos , Ciclooxigenasa 2/metabolismo , Citocinas/metabolismo , Pulpa Dental , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Pulpitis/metabolismo
7.
Pak J Med Sci ; 40(1Part-I): 159-164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38196488

RESUMEN

Objective: To explore the prognostic value and correlation between the risk of lymph node metastasis (LNM) and Guanylate-binding Protein 1 (GBP1) in breast cancer (BC) patients. Methods: In this retrospective study, the clinical data of 150 patients with BC who were surgically resected in The Affiliated Qingdao Central Hospital of Qingdao University from January 2019 to December 2021 were included. Patients were divided into metastasis group (n=110) or non-metastasis group (n=40) according to whether there was LNM post-surgery. Logistic regression was used to analyze the risk factors for LNM in BC, and Kaplan-Meier was used to assess the risk of disease progression 12 months post-operation in both groups. Patients were divided into a GBP1 low expression-group (n=75) or a GBP1 high expression-group (n=75). The risk of disease progression, one-year post-surgery was analyzed, and the predictive value of GBP1 in BC tissue was assessed by the receiver operating characteristics (ROC) curve. Results: Independent risk factors for BC with LNM were GBP1, CEA and TNM stage (P<0.05). There is a linear relationship between GBP1 expression and LNM risk in BC (χ2=0.88, P<0.05). Patients with high expression of GBP1 had a higher risk of LNM (χ2=3.204, P<0.001) and early postoperative progression (χ2=7.412, P<0.05). The AUC of GBP1 in predicting the risk of LNM was 0.840. Conclusions: Patients with BC and a higher expression of GBP1 could be at an increased risk of LNM. Elevations in GBP1 expression can also suggest a poor prognosis for patients with BC.

8.
Med Microbiol Immunol ; 212(2): 141-152, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35416510

RESUMEN

Guanylate binding proteins (GBPs) represent an evolutionary ancient protein family widely distributed among eukaryotes. They are interferon (IFN)-inducible guanosine triphosphatases that belong to the dynamin superfamily. GBPs are known to have a major role in the cell-autonomous innate immune response against bacterial, parasitic and viral infections and are also involved in inflammasome activation. Evolutionary studies depicted that GBPs present a pattern of gain and loss of genes in each family with several genes pseudogenized and some genes more divergent, indicative for the birth-and-death evolution process. Most species harbor large GBP gene clusters encoding multiple paralogs. Previous functional studies mainly focused on mouse and human GBPs, but more data are becoming available, broadening the understanding of this multifunctional protein family. In this review, we will provide new insights and give a broad overview about GBP evolution, conservation and their roles in all studied species, including plants, invertebrates and vertebrates, revealing how far the described features of GBPs can be transferred to other species.


Asunto(s)
Proteínas Portadoras , Proteínas de Unión al GTP , Humanos , Animales , Ratones , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Inmunidad Innata , Interferones/metabolismo , Inflamasomas/metabolismo
9.
Immunol Invest ; 52(1): 52-66, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36175170

RESUMEN

BACKGROUND: The inflammatory response and NLRP3 inflammasome activation are typical characteristics of lupus nephritis (LN). Guanylate-binding protein 5 (GBP5) has effects on the release of proinflammatory cytokines and the activation of NLRP3 inflammasome. However, it is largely unknown whether and how GBP5 contributes to the progression of LN. METHODS: To detect the role of GBP5 in LN, MRL/lpr mice were administrated with the lentiviral vectors that knockdown GBP5 via tail vein. Proximal tubular epithelial HK-2 cells were treated with LPS and ATP to mimic the inflammatory response of LN in vitro. RESULTS: GBP5 expression was increased in the renal cortical tissues of LN mice. The in vivo results showed that GBP5 inhibition prevented the progression of LN, as evidenced by the decreased levels of 24-hour proteinuria, blood urea nitrogen and creatinine, accompanied by the ameliorated renal pathological damages. The increased mRNA and protein levels of proinflammatory factors (IL-6, TNF-α, iNOS and COX-2) in the renal cortex of LN mice were suppressed by GBP5 knockdown. In vitro, we demonstrated that the treatment of LPS combined with ATP induced an increase in GBP5 mRNA and protein expression in HK-2 cells. Mechanically, knockdown of GBP5 inhibited the activation of NLRP3 inflammasome and the secretion of IL-1ß and IL-18 both in vivo and in vitro. CONCLUSION: Our findings reveal that GBP5 inhibition prevents the progression of LN, most likely by suppressing NLRP3 inflammasome activation. It provides a novel insight into the therapeutic interventions for LN.


Asunto(s)
Nefritis Lúpica , Ratones , Animales , Nefritis Lúpica/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Transducción de Señal , Ratones Endogámicos MRL lpr , Adenosina Trifosfato/farmacología , Adenosina Trifosfato/uso terapéutico
10.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958732

RESUMEN

The recent spread of the monkeypox virus among humans has heightened concerns regarding orthopoxvirus infections. Consequently, conducting a comprehensive study on the immunobiology of the monkeypox virus is imperative for the development of effective therapeutics. Ectromelia virus (ECTV) closely resembles the genetic and disease characteristics of monkeypox virus, making it a valuable research tool for studying orthopoxvirus-host interactions. Guanylate-binding proteins (GBPs), highly expressed interferon-stimulated genes (ISGs), have antagonistic effects against various intracellular pathogenic microorganisms. Our previous research has shown that GBP2 has a mild but statistically significant inhibitory effect on ECTV infection. The presence of a significant number of molecules in the poxvirus genome that encode the host immune response raises questions about whether it also includes proteins that counteract the antiviral activity of GBP2. Using IP/MS and co-IP technology, we discovered that the poly(A) polymerase catalytic subunit (PAPL) protein of ECTV is a viral regulatory molecule that interacts with GBP2. Further studies have shown that PAPL antagonizes the antiviral activity of GBP2 by reducing its protein levels. Knocking out the PAPL gene of ECTV with the CRISPR/Cas9 system significantly diminishes the replication ability of the virus, indicating the indispensable role of PAPL in the replication process of ECTV. In conclusion, our study presents preliminary evidence supporting the significance of PAPL as a virulence factor that can interact with GBP2.


Asunto(s)
Virus de la Ectromelia , Ectromelia Infecciosa , Animales , Ratones , Humanos , Virus de la Ectromelia/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , Dominio Catalítico , Antivirales/farmacología
11.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33408175

RESUMEN

Guanylate-binding protein 7 (GBP7) belongs to the GBP family, which plays key roles in mediating innate immune responses to intracellular pathogens. Thus far, GBP7 has been reported to be a critical cellular factor against bacterial infection. However, the relationship between GBP7 and influenza A virus (IAV) replication is unknown. Here, we showed that GBP7 expression was significantly upregulated in the lungs of mice, human peripheral blood mononuclear cells (PBMCs), and A549 cells during IAV infection. Using the CRISPR-Cas9 system and overexpression approaches, it was found that GBP7 knockout inhibited IAV replication by enhancing the expression of IAV-induced type I interferon (IFN), type III IFN, and proinflammatory cytokines. Conversely, overexpression of GBP7 facilitated IAV replication by suppressing the expression of those factors. Furthermore, GBP7 knockout enhanced IAV-induced nuclear factor-κB (NF-κB) activation and phosphorylation of stat1 and stat2; overexpression of GBP7 had the opposite effect. Our data indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, upon IAV infection, the induced GBP7 facilitated IAV replication by suppressing innate immune responses to IAV infection, which suggested that GBP7 serves as a therapeutic target for controlling IAV infection.IMPORTANCE So far, few studies have mentioned the distinct function of guanylate-binding protein 7 (GBP7) on virus infection. Here, we reported that GBP7 expression was significantly upregulated in the lungs of mice, human PBMCs, and A549 cells during IAV infection. GBP7 facilitated IAV replication by suppressing the expression of type I interferon (IFN), type III IFN, and proinflammatory cytokines. Furthermore, it was indicated that GBP7 suppresses innate immune responses to IAV infection via NF-κB and JAK-STAT signaling pathways. Taken together, our results elucidate a critical role of GBP7 in the host immune system during IAV infection.


Asunto(s)
Proteínas de Unión al GTP/inmunología , Virus de la Influenza A/fisiología , Subunidad alfa del Factor 3 de Genes Estimulados por el Interferón/metabolismo , FN-kappa B/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Replicación Viral , Animales , Células Cultivadas , Citocinas/genética , Citocinas/inmunología , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Evasión Inmune , Inmunidad Innata , Virus de la Influenza A/inmunología , Interferones/genética , Interferones/inmunología , Pulmón/metabolismo , Pulmón/virología , Ratones , Infecciones por Orthomyxoviridae/virología , Fosforilación , Transducción de Señal/inmunología
12.
Microb Pathog ; 169: 105655, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35753598

RESUMEN

Guanylate-binding proteins (GBPs) are a class of interferon (IFN)-stimulated genes with well-established activity against viruses, intracellular bacteria, and parasites. The effect of epigenetic modification on GBP activity upon Mycobacterium tuberculosis (Mtb) infection is poorly understood. In this study, we found that Mtb infection can significantly increase the expression of GBPs. Class Ⅰ histone deacetylase inhibitor (HDACi) MS-275 can selectively inhibit GBP1 expression, ultimately affecting the release of inflammatory cytokines IL-1ß and suppressing Mtb intracellular survival. Moreover, interfering with GBP1 expression could reduce the production of IL-1ß and the level of cleaved-caspase-3 in response to Mtb infection. GBP1 silencing did not affect Mtb survival. Besides, using the bisulfite sequencing PCR, we showed that the CpG site of the GBP1 promoter was hypermethylated, and the methylation status of the GBP1 promoter did not change significantly upon Mtb infection. Overall, this study sheds light on the role of GBP in Mtb infection and provides a link between epigenetics and GBP1 activity.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Infecciones por Mycobacterium , Mycobacterium tuberculosis , Citocinas/metabolismo , Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo
13.
Microb Pathog ; 168: 105568, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35537595

RESUMEN

Visceral Leishmaniasis (VL) is a zoonotic chronic endemic infectious disease caused by Leishmania donovani infection and a well-studied model for intracellular parasitism. Guanylate binding proteins (GBPs) are induced by interferons (IFNs), and play a crucial role in cell autonomous immunity and the regulation of inflammation. Guanylate-binding protein 1 (GBP1) has been shown vital for the host immune response against various pathogens. However, the role of GBP1 during VL is undefined. In the present study, we have investigated the role of GBP1 in Leishmania donovani infection using in vitro model. For that, knock down of the Gbp1 gene was carried out in both PMA differentiated human monocyte cell line THP-1 and mouse macrophages RAW264.7 cell line using siRNA based RNA interference. Infection of these cell lines revealed a high parasite load in knock down cells at 24 and 48h post infection as compared to control cells. A significant increase was observed in the level of different cytokines (IL-4, IL-10, IL-12b, IFN-γ, TNF-α) and chemokines (CXCL9, CXCL 10, and CXCL 11) in GBP1 knock down cell lines after post-infection. In GBP1 knock down cells the expression level of IFN effector molecules (iNOS and PKR) was found to be elevated in THP1 cells and remained almost unchanged in RAW264.7 cells after Leishmania donovani infection as compared to the control cells. Moreover, interestingly, the level of MAPK activated ERK1/2, and p38 MAPK were considerably induced by the parasite in knock down cells as compared to control after 24 h post-infection. This study, first time reported the involvement of GBP1 in Leishmania donovani infection by modulating the level of important cytokines, chemokines, IFN effector molecules, and MAP kinases.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral , Animales , Quimiocinas/genética , Citocinas/metabolismo , Interferones , Leishmania donovani/genética , Ratones , Proteínas Quinasas Activadas por Mitógenos
14.
Cell Microbiol ; 23(10): e13375, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34169616

RESUMEN

In this study, we provide evidence that galectin-3 (Gal-3) plays an important role in Brucella abortus infection. Our results showed increased Gal-3 expression and secretion in B. abortus infected macrophages and mice. Additionally, our findings indicate that Gal-3 is dispensable for Brucella-containing vacuoles disruption, inflammasome activation and pyroptosis. On the other hand, we observed that Brucella-induced Gal-3 expression is crucial for induction of molecules associated to type I IFN signalling pathway, such as IFN-ß: Interferon beta (IFN-ß), C-X-C motif chemokine ligand 10 (CXCL10) and guanylate-binding proteins. Gal-3 KO macrophages showed reduced bacterial numbers compared to wild-type cells, suggesting that Gal-3 facilitates bacterial replication in vitro. Moreover, priming Gal-3 KO cells with IFN-ß favoured B. abortus survival in macrophages. Additionally, we also observed that Gal-3 KO mice are more resistant to B. abortus infection and these animals showed elevated production of proinflammatory cytokines when compared to control mice. Finally, we observed an increased recruitment of macrophages, dendritic cells and neutrophils in spleens of Gal-3 KO mice compared to wild-type animals. In conclusion, this study demonstrated that Brucella-induced Gal-3 is detrimental to host and this molecule is implicated in inhibition of recruitment and activation of immune cells, which promotes B. abortus spread and aggravates the infection. TAKE AWAYS: Brucella abortus infection upregulates galectin-3 expression Galectin-3 regulates guanylate-binding proteins expression but is not required for Brucella-containing vacuole disruption Galectin-3 modulates proinflammatory cytokine production during bacterial infection Galectin-3 favours Brucella replication.


Asunto(s)
Brucella abortus , Brucelosis , Galectina 3/metabolismo , Animales , Citocinas , Galectina 3/genética , Macrófagos , Ratones , Ratones Noqueados
15.
BMC Infect Dis ; 22(1): 328, 2022 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-35369870

RESUMEN

BACKGROUND: The host blood transcriptional levels of several genes, such as guanylate binding protein 5 (GBP5), have been reported as potential biomarkers for active tuberculosis (aTB) diagnosis. The aim of this study was to investigate whole blood GBP5 protein levels in aTB and non-tuberculosis patients. METHODS: An in-house immunoassay for testing GBP5 protein levels in whole blood was developed, and suspected aTB patients were recruited. Whole blood samples were collected and tested at enrolment using interferon-gamma release assay (IGRA) and the GBP5 assay. RESULTS: A total of 470 participants were enrolled, and 232 and 238 patients were finally diagnosed with aTB and non-TB, respectively. The GBP5 protein levels of aTB patients were significantly higher than those of non-tuberculosis patients (p < 0.001), and the area under the ROC curve of the GBP5 assay for aTB diagnosis was 0.76. The reactivity of the GBP5 assay between pulmonary and extrapulmonary tuberculosis patients was comparable (p = 0.661). With the optimal cut-off value, the sensitivity and specificity of the GBP5 assay for diagnosing aTB were 78.02 and 66.81%, respectively, while those of IGRA were 77.59 and 76.47%. The combination of the GBP5 assay and IGRA results in 88.52% accuracy for diagnosing aTB in 63.83% of suspected patients with a positive predictive value of 89.57% and a negative predictive value of 87.59%. CONCLUSIONS: Whole blood GBP5 protein is a valuable biomarker for diagnosing of aTB. This study provides an important idea for realizing the clinical application of whole blood transcriptomics findings by immunological methods.


Asunto(s)
Tuberculosis , Proteínas de Unión al GTP/genética , Humanos , Ensayos de Liberación de Interferón gamma/métodos , Valor Predictivo de las Pruebas , Curva ROC , Sensibilidad y Especificidad , Tuberculosis/diagnóstico
16.
J Biol Chem ; 295(23): 8036-8047, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32354743

RESUMEN

Noroviruses are the main causative agents of acute viral gastroenteritis, but the host factors that restrict their replication remain poorly identified. Guanylate-binding proteins (GBPs) are interferon (IFN)-inducible GTPases that exert broad antiviral activity and are important mediators of host defenses against viral infections. Here, we show that both IFN-γ stimulation and murine norovirus (MNV) infection induce GBP2 expression in murine macrophages. Results from loss- and gain-of-function assays indicated that GBP2 is important for IFN-γ-dependent anti-MNV activity in murine macrophages. Ectopic expression of MNV receptor (CD300lf) in human HEK293T epithelial cells conferred susceptibility to MNV infection. Importantly, GBP2 potently inhibited MNV in these human epithelial cells. Results from mechanistic dissection experiments revealed that the N-terminal G domain of GBP2 mediates these anti-MNV effects. R48A and K51A substitutions in GBP2, associated with loss of GBP2 GTPase activity, attenuated the anti-MNV effects of GBP2. Finally, we found that nonstructural protein 7 (NS7) of MNV co-localizes with GBP2 and antagonizes the anti-MNV activity of GBP2. These findings reveal that GBP2 is an important mediator of host defenses against murine norovirus.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Inmunidad Innata , Norovirus/inmunología , Proteínas no Estructurales Virales/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al GTP/genética , Células HEK293 , Humanos , Inmunidad Innata/inmunología , Interferón gamma/inmunología , Macrófagos/inmunología , Macrófagos/virología , Ratones , Células RAW 264.7
17.
Cytokine ; 138: 155388, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33271385

RESUMEN

Chinese tree shrews (Tupaia belangeri chinensis) are increasingly used as an alternative experimental animal to non-human primates in studying viral infections. Guanylate-binding proteins (GBP) belong to interferon (IFN)-inducible GTPases and defend the mammalian cell interior against diverse invasive pathogens. Previously, we identified five tree shrew GBP genes (tGBP1, tGBP2, tGBP4, tGBP5, and tGBP7) and found that tGBP1 showed antiviral activity against vesicular stomatitis virus (VSV) and type 1 herpes simplex virus (HSV-1) infections. Here, we showed that the anti-VSV activity of tGBP1 was independent of its GTPase activity and isoprenylation. In response to VSV infection, instead of regulating IFN expression and autophagy, tGBP1 competed with the VSV nucleocapsid (N) protein in binding to the VSV phosphoprotein (VSV-P), leading to the repression of the primary transcription of the VSV genome. These observations constitute the first report of the potential mechanism underlying the inhibition of VSV by GBP1.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Genoma Viral , Fosfoproteínas/genética , Tupaia/genética , Vesiculovirus/metabolismo , Animales , Autofagia , Células HEK293 , Humanos , Interferones/metabolismo , Proteínas de la Nucleocápside/química , Unión Proteica , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba , Proteínas Virales/química , Replicación Viral/efectos de los fármacos
18.
J Clin Lab Anal ; 35(2): e23610, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33301214

RESUMEN

OBJECTIVE: Guanylate-binding protein 1 (GBP1) is reported to promote tumor progression and treatment resistance in lung cancer, and presents as a prognostic biomarker in several solid tumors. However, the related research of GBP1 in clinical management of lung adenocarcinoma is still lacking. Therefore, the present study aimed to detect the clinical role of GBP1 in lung adenocarcinoma. METHODS: The clinical data of 221 lung adenocarcinoma patients were retrospectively analyzed, and then, their tumor tissue specimens and paired adjacent tissue specimens were retrieved for GBP1 detection via immunohistochemistry (IHC) assay. RESULTS: GBP1 expression was upregulated in tumor tissues compared with adjacent tissues (P < .001). Moreover, high tumor GBP1 expression was associated with larger tumor size (P = .030), positive lymph node (LYN) metastasis (P = .001), advanced TNM stage (P = .001), and abnormal preoperative carcinoembryonic antigen (CEA) level (P = .026). Furthermore, tumor GBP1 high expression was correlated with reduced disease-free survival (DFS) and overall survival (OS), and was of independent value in predicting worse DFS and OS. Additionally, data analysis of 1144 lung cancer patients derived from KMplot database (www.kmplot.com) further verified that GBP1 expression was negatively correlated with OS (P = .009). CONCLUSION: GBP1 correlates with advanced tumor features and worse survival profiles, suggesting its value to be a prognostic biomarker in management of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón/mortalidad , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al GTP/metabolismo , Neoplasias Pulmonares/mortalidad , Adenocarcinoma del Pulmón/patología , Anciano , Biomarcadores de Tumor/análisis , Supervivencia sin Enfermedad , Humanos , Neoplasias Pulmonares/patología , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos
19.
Biochem J ; 476(21): 3161-3182, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31689351

RESUMEN

Guanylate-binding proteins (GBPs) constitute a family of interferon-inducible guanosine triphosphatases (GTPases) that are key players in host defense against intracellular pathogens ranging from protozoa to bacteria and viruses. So far, human GBP1 and GBP5 as well as murine GBP2 (mGBP2) have been biochemically characterized in detail. Here, with murine GBP7 (mGBP7), a GBP family member with an unconventional and elongated C-terminus is analyzed. The present study demonstrates that mGBP7 exhibits a concentration-dependent GTPase activity and an apparent GTP turnover number of 20 min-1. In addition, fluorescence spectroscopy analyses reveal that mGBP7 binds GTP with high affinity (KD = 0.22 µM) and GTPase activity assays indicate that mGBP7 hydrolyzes GTP to GDP and GMP. The mGBP7 GTPase activity is inhibited by incubation with γ-phosphate analogs and a K51A mutation interfering with GTP binding. SEC-MALS analyses give evidence that mGBP7 forms transient dimers and that this oligomerization pattern is not influenced by the presence of nucleotides. Moreover, a structural model for mGBP7 is provided by homology modeling, which shows that the GTPase possesses an elongated C-terminal (CT) tail compared with the CaaX motif-containing mGBP2 and human GBP1. Molecular dynamics simulations indicate that this tail has transmembrane characteristics and, interestingly, confocal microscopy analyses reveal that the CT tail is required for recruitment of mGBP7 to the parasitophorous vacuole of Toxoplasma gondii.


Asunto(s)
Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Cinética , Ratones , Simulación de Dinámica Molecular , Dominios Proteicos , Toxoplasma/fisiología , Toxoplasmosis/enzimología , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Toxoplasmosis/parasitología
20.
Clin Oral Investig ; 24(8): 2673-2682, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31707626

RESUMEN

OBJECTIVES: Guanylate-binding protein 6 (GBP6) is a member of the guanylate-binding protein family, and its role in cancer has not yet been reported. We aimed to investigate the clinical significance of GBP6 in oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Next-generation sequencing was applied for analyzing differential gene expression profiling between corresponding tumor adjacent normal (CTAN) and tumor tissue from two paired OSCC patients. Real-time PCRs (RT-PCRs) were used to investigate the gene expression level of GBP6 of CTAN and tumor tissue samples from 14 TSCC patients. Immunohistochemistry was used to investigate the protein expression level of GBP6 in tumor tissues and paired CTAN tissues from 488 OSCC patients, including 183 buccal mucosa squamous cell carcinoma (BMSCC), 245 tongue squamous cell carcinoma (TSCC), and 60 lip squamous cell carcinoma (LSCC) patients. RESULTS: Compared with CTAN tissues of OSCC patients, GBP6 is identified as a downregulated gene using the NGS platform, which was confirmed in 14 OSCC patients by RT-PCR. Moreover, protein expression level of GBP6 in tumor tissues was lower than that in CTAN tissues and the low GBP6 expression was correlated with poor cell differentiation/lymph node metastasis in TSCC patients. In addition, TSCC patients with low expression levels of GBP6 had poor disease-specific survival rate. CONCLUSION: The low expression of GBP6 was associated with tumorigenesis and poor prognosis in OSCC patients, especially in TSCC patients. CLINICAL RELEVANCE: GBP6 may serve as a novel favorable diagnostic and prognostic biomarker in TSCC patients.


Asunto(s)
Neoplasias de la Lengua , Biomarcadores de Tumor , Carcinogénesis , Transformación Celular Neoplásica , Humanos , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA