Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Bioorg Chem ; 141: 106817, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37690318

RESUMEN

A novel series of phthalimide-hydroxypyridinone derivatives were rationally designed and evaluated as potential anti-Alzheimer's disease (AD) agents. Bioactivity tests showed that all compounds displayed great iron ions-chelating activity (pFe3+ = 17.07-19.52), in addition to potent inhibition of human monoamine oxidase B (hMAO-B). Compound 11n emerged as the most effective anti-AD lead compound with a pFe3+ value of 18.51, along with selective hMAO-B inhibitory activity (IC50 = 0.79 ± 0.05 µM, SI > 25.3). The results of cytotoxicity assays demonstrated that 11n showed extremely weak toxicity in PC12 cell line at 50 µM. Additionally, compound 11n displayed a cytoprotective effect against H2O2-induced oxidative damage. Moreover, compound 11n exhibited ideal blood-brain barrier (BBB) permeability in the parallel artificial membrane permeation assay (PAMPA), and significantly improved scopolamine-induced cognitive and memory impairment in mice behavioral experiments. In conclusion, these favorable experimental results suggested compound 11n deserved further investigation as an anti-AD lead compound.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Humanos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/uso terapéutico , Peróxido de Hidrógeno , Relación Estructura-Actividad , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Diseño de Fármacos , Monoaminooxidasa/metabolismo , Ftalimidas/farmacología , Péptidos beta-Amiloides , Acetilcolinesterasa/metabolismo
2.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958841

RESUMEN

Natural flavone and isoflavone analogs such as 3',4',7-trihydroxyflavone (1), 3',4',7-trihydroxyisoflavone (2), and calycosin (3) possess significant neuroprotective activity in Alzheimer's and Parkinson's disease. This study highlights the in vitro human monoamine oxidase (hMAO) inhibitory potential and functional effect of those natural flavonoids at dopamine and serotonin receptors for their possible role in neuroprotection. In vitro hMAO inhibition and enzyme kinetics studies were performed using a chemiluminescent assay. The functional effect of three natural flavonoids on dopamine and serotonin receptors was tested via cell-based functional assays followed by a molecular docking simulation to predict interactions between a compound and the binding site of the target protein. A forced swimming test was performed in the male C57BL/6 mouse model. Results of in vitro chemiluminescent assays and enzyme kinetics depicted 1 as a competitive inhibitor of hMAO-A with promising potency (IC50 value: 7.57 ± 0.14 µM) and 3 as a competitive inhibitor of hMAO-B with an IC50 value of 7.19 ± 0.32 µM. Likewise, GPCR functional assays in transfected cells showed 1 as a good hD4R antagonist. In docking analysis, these active flavonoids interacted with a determinant-interacting residue via hydrophilic and hydrophobic interactions, with low docking scores comparable to reference ligands. The post-oral administration of 1 to male C57BL/6 mice did not reduce the immobility time in the forced swimming test. The results of this study suggest that 1 and 3 may serve as effective regulators of the aminergic system via hMAO inhibition and the hD4R antagonist effect, respectively, for neuroprotection. The route of administration should be considered.


Asunto(s)
Dopamina , Flavonoides , Ratones , Animales , Humanos , Masculino , Flavonoides/farmacología , Inhibidores de la Monoaminooxidasa/química , Simulación del Acoplamiento Molecular , Neuroprotección , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Receptores de Serotonina , Relación Estructura-Actividad , Estructura Molecular
3.
Bioorg Med Chem Lett ; 43: 128051, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33887441

RESUMEN

Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson's disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, K8 and K24 demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.


Asunto(s)
Diseño de Fármacos , Indenos/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Indenos/síntesis química , Indenos/química , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/química
4.
Bioorg Chem ; 117: 105430, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34678603

RESUMEN

Monoamine oxidases (MAOs) have become promising drug targets for the development of central nervous system agents. In recent research, it was shown that numerous piperazine derivatives exhibit hMAO inhibitory activity. Therefore, in this study, a novel series of 1,2,4-triazole-piperazine derivatives (5a-j) were designed, synthesized, characterized, and screened for their hMAO-A and hMAO-B inhibitory activities. When the ADME predictions were examined, it was seen that the pharmacokinetic profiles of all synthesized compounds were appropriate. Compounds 5a, 5b, 5c, and 5e, with H, F, Cl, and NO2 groups on the 4-position of the phenyl ring, respectively, showed important MAO-A inhibitory activity. Compound 5c was found to be the most effective agent among the synthesized compounds with an IC50 value of 0.070 ± 0.002 µM against the MAO-A enzyme. The synthesized compounds appear to support the results of other studies to design MAO inhibitors to obtain more suitable drugs, especially for neurological disorders such as depression and anxiety.


Asunto(s)
Diseño de Fármacos , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Piperazina/farmacología , Triazoles/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Piperazina/química , Relación Estructura-Actividad , Triazoles/química
5.
Bioorg Chem ; 109: 104685, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33640631

RESUMEN

The monoamine oxidase-B (MAO-B) inhibitors with neuroprotective effects are better for Parkinson's disease (PD) treatment, due to the complicated pathogenesis of PD. To develop new hMAO-B inhibitors with neuroprotection, a novel series of 3,4-dihydrocoumarins was designed as selective and reversible hMAO-B inhibitors to treat PD. Most compounds showed potent and selective inhibition for hMAO-B over hMAO-A with IC50 values ranging from nanomolar to sub-nanomolar. Among them, compound 4d was the most potent hMAO-B inhibitor (IC50 = 0.37 nM) being about 20783-fold more active than iproniazid, and exhibited the highest selectivity for hMAO-B (SI > 270,270). Kinetic studies revealed that compound 4d was a reversible and competitive inhibitor of hMAO-B. Neuroprotective studies indicated that compound 4d could protect PC12 cells from the damage induced by 6-OHDA and rotenone. Besides, compound 4d did not exhibit acute toxicity at a dose up to 2500 mg/kg (po), and could cross the BBB in parallel artificial membrane permeability assay. More importantly, compound 4d was able to significantly prevent the motor deficits in the MPTP-induced PD model. These results indicate that compound 4d is an effective and promising candidate against PD.


Asunto(s)
Cumarinas/química , Diseño de Fármacos , Intoxicación por MPTP/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Animales , Indanos/farmacología , Ratones , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Oxidopamina/toxicidad , Células PC12 , Conformación Proteica , Ratas , Rotenona/toxicidad , Relación Estructura-Actividad
6.
Bioorg Chem ; 115: 105233, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390968

RESUMEN

Up to date, the current clinical practice employs only symptomatic treatments for management of Parkinson's disease (PD) but unable to stop disease progression. The discovery of new chemical entities endowed with potent and selective human monoamine oxidase B (hMAO-B) inhibitory activity is a clinically relevant subject. Herein, a structural optimization strategy for safinamide (a well-known second generation hMAO-B inhibitor) afforded a series of thirty-six safinamide-derived new analogs (4aa-bj). Most compounds showed promising inhibitory activities against hMAO-B (>70% inhibition at a single dose concentration of 10 µM), with no apparent effect on hMAO-A at 100 µM. Moreover, while six compounds (4ak, 4as, 4az, 4be, 4bg, and 4bi) exhibited potent double-digit nanomolar activities over hMAO-B with IC50 values of 29.5, 42.2, 22.3, 18.8, 42.2, and 33.9 nM, respectively, three derivatives (4aq, 4at, and 4bf), possessing the same carboxamide moiety (2-pyrazinyl), showed the most potent single-digit nanomolar activities (IC50 = 9.7, 5.1, and 3.9 nM, respectively). Compound 4bf revealed an excellent selectivity index (SI > 25641) with a 29-fold increase compared to safinamide (SI > 892). A structure activity relationship along with molecular docking simulations provided insights into enzyme - inhibitor interactions and a rational for the observed activity. In an in vivo MPTP-induced mouse model of PD, oral administration of compound 4bf significantly protected nigrostriatal dopaminergic neurons as revealed by tyrosine hydroxylase staining and prevented MPTP-induced Parkinsonism as revealed by motor behavioral assays. Accordingly, we present compound 4bf as a novel, highly potent, and selective hMAO-B inhibitor with an effective therapeutic profile for relieving PD.


Asunto(s)
Alanina/análogos & derivados , Bencilaminas/farmacología , Descubrimiento de Drogas , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Alanina/síntesis química , Alanina/química , Alanina/farmacología , Bencilaminas/síntesis química , Bencilaminas/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Enfermedad de Parkinson/metabolismo , Relación Estructura-Actividad
7.
Molecules ; 26(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34771054

RESUMEN

MAO-B inhibitors are frequently used in the treatment of neurodegenerative diseases such as Parkinson's and Alzheimer's. Due to the limited number of compounds available in this field, there is a need to develop new compounds. In the recent works, it was shown that various thiosemicarbazone derivatives show hMAO inhibitory activity in the range of micromolar concentration. It is thought that benzofuran and benzothiophene structures may mimic structures such as indane and indanone, which are frequently found in the structures of such inhibitors. Based on this view, new benzofuran/benzothiophene and thiosemicarbazone hybrid compounds were synthesized, characterized and screened for their hMAO-A and hMAO-B inhibitory activity by an in vitro fluorometric method. The compounds including methoxyethyl substituent (2b and 2h) were found to be the most effective agents in the series against MAO-B enzyme with the IC50 value of 0.042 ± 0.002 µM and 0.056 ± 0.002 µM, respectively. The mechanism of hMAO-B inhibition of compounds 2b and 2h was investigated by Lineweaver-Burk graphics. Compounds 2b and 2h were reversible and non-competitive inhibitors with similar inhibition features as the substrates. The Ki values of compounds 2b and 2h were calculated as 0.035 µM and 0.046 µM, respectively, with the help of secondary plots. The docking study of compound 2b and 2h revealed that there is a strong interaction between the active sites of hMAO-B and analyzed compound.


Asunto(s)
Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Sitios de Unión , Supervivencia Celular , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Activación Enzimática , Humanos , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Monoaminooxidasa/química , Unión Proteica , Análisis Espectral , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 29(8): 1012-1018, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30792039

RESUMEN

Herein we report our efforts of developing reversible selective hMAO-B inhibitors based on isatin, a fragment in an X-ray crystal structure. Five different scaffolds were designed and many compounds were synthesized. Among them, compound A3 demonstrated very high potency and isoform selectivity against hMAO-B, 11 and 13 times more potent (IC50 = 3 nM) and 23.64 and 6.8 times more selective than the marked drugs, selegiline and safinamide. However, the endeavors to modify the polar 3-one group of isatin, that is in a hydrophobic environment in the binding site of hMAO-B, to small nonpolar hydrophobic groups did not bring about improved hMAO-B inhibitors, which may challenge our understanding of molecular interactions and molecular recognition in biological systems.


Asunto(s)
Diseño de Fármacos , Inhibidores de la Monoaminooxidasa/síntesis química , Monoaminooxidasa/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Isatina/química , Isatina/metabolismo , Simulación de Dinámica Molecular , Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 29(19): 126625, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31444085

RESUMEN

A series of 2-acetylphenol-donepezil hybrids was designed and synthesized based on multi-target-directed ligands strategy. The biological activities were evaluated by AChE/BChE inhibition and MAO-A/MAO-B inhibition. The results revealed that the tertiary amines and methylene chain length significantly affected the eeAChE inhibitory potency, in particular, compound TM-14 showed the best eeAChE inhibitory activity with IC50 value of 2.9 µM, in addition, both kinetic analysis of AChE inhibition and docking study displayed that TM-14 could simultaneously bind to the catalytic active site and peripheral anionic site of AChE. Moreover, compound TM-14 was a selective metal chelator and could form 1:1 TM-14-Cu2+ complex. The structure-active-relationship also indicated that the O-alkylamine fragment remarkably decreased hMAO-B inhibitory activity, compound TM-2 exhibited potent hMAO-B inhibitory activity (IC50 = 6.8 µM), which was supported by the molecular docking study. More interestingly, compounds TM-14 and TM-2 could cross the blood-brain barrier in vitro. Therefore, the structure-active-relationship of 2-acetylphenol-donepezil hybrids could encourage the development of multifunction agents with selective AChE inhibition or selective MAO-B inhibition for the treatment of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa/farmacología , Colinesterasas/química , Donepezilo/química , Desarrollo de Medicamentos , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/química , Inhibidores de la Colinesterasa/química , Diseño de Fármacos , Humanos , Cinética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
10.
Bioorg Med Chem ; 24(8): 1741-8, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26964672

RESUMEN

Based on our recently reported selective hMAO-A inhibitors, on which, the intramolecular cyclization led to a very interesting change of isoform selectivity. A series of selective hMAO-B inhibitors (3a-3u) with novel scaffold of tricyclic pyrazolo[1,5-d][1,4]benzoxazepin-5(6H)-one were designed and synthesized. Compound 3u (IC50=221 nM) exhibited the best inhibitory activity and isoform selectivity against hMAO-B, superior to selegiline (IC50=321 nM), which is a commercial selective hMAO-B inhibitor used to Parkinson's disease. Modeling study indicated that the selectivity of our compounds to hMAO-B is determined by at least two residues, i.e., Ile 199 and Cys 172 (or corresponded Phe 208 and Asn 181 of hMAO-A). These data support further studies to assess rational design of more efficiently selective hMAO-B inhibitors.


Asunto(s)
Benzoxazinas/farmacología , Diseño de Fármacos , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Pirazoles/farmacología , Benzoxazinas/síntesis química , Benzoxazinas/química , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
11.
Arch Pharm (Weinheim) ; 349(1): 9-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26592858

RESUMEN

Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study.


Asunto(s)
Amidas/química , Ácidos Cumáricos/química , Curcumina/análogos & derivados , Curcumina/química , Inhibidores de la Monoaminooxidasa/química , Amidas/síntesis química , Amidas/farmacología , Animales , Permeabilidad de la Membrana Celular , Ácidos Cumáricos/síntesis química , Ácidos Cumáricos/farmacología , Curcumina/síntesis química , Curcumina/farmacología , Perros , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Células de Riñón Canino Madin Darby , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , Relación Estructura-Actividad
12.
J Enzyme Inhib Med Chem ; 30(6): 908-19, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25807300

RESUMEN

Several (thiazol-2-yl)hydrazone derivatives from 2-, 3- and 4-acetylpyridine were synthesized and tested against human monoamine oxidase (hMAO) A and B enzymes. Most of them had an inhibitory effect in the low micromolar/high nanomolar range, being derivatives of 4-acetylpyridine selective hMAO-B inhibitors also at low nanomolar concentrations. The structure-activity relationship, as confirmed by molecular modeling studies, proved that the pyridine ring linked to the hydrazonic nitrogen and the substituted aryl moiety at C4 of the thiazole conferred the inhibitory effects on hMAO enzymes. Successively, the strongest hMAO-B inhibitors were tested toward acetylcholinesterase (AChE) and the most interesting compound showed activity in the low micromolar range. Our results suggest that this scaffold could be further investigated for its potential multi-targeted role in the discovery of new drugs against the neurodegenerative diseases.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacología , Hidrazonas/farmacología , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Piridinas/química , Piridinas/farmacología , Tiazoles/farmacología , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Humanos , Hidrazonas/síntesis química , Hidrazonas/química , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Piridinas/síntesis química , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química
13.
Bioorg Med Chem ; 22(14): 3732-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24856304

RESUMEN

A series new 2H-chromene-3-carboxamides (4a-4i) and S-2H-chromene-3-carbothioates (5j-5t) were synthesized and evaluated as monoamine oxidase A and B inhibitors. Among them, compound 5k (IC50=0.21µM, IC50 iproniazid=7.65µM) showed the most activity and higher MAO-B selectivity (189.2-fold vs 1-fold) with respect to the MAO-A isoform. The need to clarify at a 3D level some important molecular aspects of discussed SAR, we undertaked a number of docking simulations to better assess. The steric effect was analyzed interms of both posing and scoring by investigating the nature of the binding interactions. The docking results of active compound 5k with hMAO-B complex indicated that conserved residue ILE 199 was important for ligand binding via Sigma-Pi interaction.


Asunto(s)
Cumarinas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Humanos , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Relación Estructura-Actividad
14.
Eur J Med Chem ; 274: 116566, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38838545

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. The development of novel scaffolds for human monoamine oxidase B (hMAO-B) inhibitors with reversible properties represents an important strategy to improve the efficacy and safety for PD treatment. In the current work, we have devised and assessed two innovative derivative series serving as hMAO-B inhibitors. These series have utilized benzimidazole as a scaffold and strategically incorporated a primary amide group, which is recognized as a pivotal pharmacophore in subsequent activity screening and reversible mode of action. Among these compounds, 16d has emerged as the most potent hMAO-B inhibitor with an IC50 value of 67.3 nM, comparable to safinamide (IC50 = 42.6 nM) in vitro. Besides, 16d demonstrated good selectivity towards hMAO-B isoenzyme with a selectivity index over 387. Importantly, in line with the design purpose, 16d inhibited hMAO-B in a competitive and reversible manner (Ki = 82.50 nM). Moreover, 16d exhibited a good safety profile in both cellular and acute toxicity assays in mice. It also displayed ideal pharmacokinetic properties and blood-brain barrier permeability in vivo, essential prerequisites for central nervous system medicines. In the MPTP-induced PD mouse model, 16d significantly alleviated the motor impairment, especially muscle relaxation and motor coordination. Therefore, 16d, serving as a lead compound, holds instructive significance for subsequent investigations regarding its application in the treatment of PD.


Asunto(s)
Bencimidazoles , Descubrimiento de Drogas , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Enfermedad de Parkinson , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/síntesis química , Monoaminooxidasa/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Ratones , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Enfermedad de Parkinson/tratamiento farmacológico , Estructura Molecular , Relación Dosis-Respuesta a Droga , Masculino , Ratones Endogámicos C57BL , Antiparkinsonianos/farmacología , Antiparkinsonianos/síntesis química , Antiparkinsonianos/química , Antiparkinsonianos/uso terapéutico
15.
Bioorg Med Chem Lett ; 23(18): 5128-30, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23927971

RESUMEN

A series of 1-methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles (3a-k and 4a-u) were designed, synthesized, and evaluated for their inhibitory efficacy towards the two hMAO isoforms. Most of the derivatives were found to be potent and selective hMAO-B inhibitors. In particular, derivative 3g showed greater hMAO-B affinity than selective inhibitor selegiline coupled with high selectivity index (SI=145). The most selective hMAO-B inhibitor was the 3-methyl analogue 3f with an SI higher than 909.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Monoaminooxidasa/metabolismo , Pirazoles/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Pirazoles/síntesis química , Pirazoles/química , Relación Estructura-Actividad
16.
Comput Biol Chem ; 105: 107899, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315342

RESUMEN

Oximes are the promising structural scaffold for inhibiting monoamine oxidase (MAO)-B. Eight chalcone-based oxime derivatives were synthesized by microwave-assisted technique, and their ability to inhibit human MAO (hMAO) enzymes were tested. All compounds showed higher inhibitory activity of hMAO-B than hMAO-A. In the CHBO subseries, CHBO4 most potently inhibited hMAO-B with an IC50 value of 0.031 µM, followed by CHBO3 (IC50 = 0.075 µM). In the CHFO subseries, CHFO4 showed the highest inhibition of hMAO-B with an IC50 value of 0.147 µM. Compound CHBO4 had the highest selectivity index (SI) value of 1290.3. However, CHBO3 and CHFO4 showed relatively low SI values of 27.7 and 19.2, respectively. The -Br substituent in the CHBO subseries at the para-position in the B-ring showed higher hMAO-B inhibition than the -F substituent in the CHFO subseries. In both series, hMAO-B inhibition increased with the substituents at para-position in A-ring (-F > -Br > -Cl > -H in order). Compound CHBO4 (-F in A-ring and -Br in B-ring) was 12.6-times potent than the substituents-reversed compound CHFO3 (-Br in A-ring and -F in B-ring; IC50 = 0.391 µM). In the kinetic study, Ki values of CHBO4 and CHFO4 for hMAO-B were 0.010 ± 0.005 and 0.040 ± 0.007 µM, respectively, with competitive inhibitions. Reversibility experiments showed that CHBO4 and CHFO4 were reversible hMAO-B inhibitors. In the cytotoxicity test using the Vero cells by the MTT technique, CHBO4 had low toxicity with an IC50 value of 128.8 µg/mL. In H2O2-induced cells, CHBO4 significantly reduced cell damage by scavenging reactive oxygen species (ROS). Molecular docking and dynamics showed the stable binding mode of the lead molecule CHBO4 on the active site of hMAO-B. These results suggest that CHBO4 is a potent reversible, competitive, and selective hMAO-B inhibitor and can be used as a treatment agent for neurological disorders.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Animales , Chlorocebus aethiops , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Peróxido de Hidrógeno , Células Vero , Monoaminooxidasa/metabolismo , Relación Estructura-Actividad , Estructura Molecular
17.
Metabolites ; 13(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37512564

RESUMEN

Astragalus glycyphyllos (Fabaceae) is used in the traditional medicine of many countries against hepatic and cardiac disorders. The plant contains mainly flavonoids and saponins. From a defatted methanol extract from its overground parts, a new triterpenoid saponin, 3-O-[α-L-rhamnopyranosyl-(1→2)]-ß-D-xylopyranosyl]-24-O-α-L-arabinopyranosyl-3ß,6α,16ß,24(R),25-pentahydroxy-20R-cycloartane, together with the rare saponin astrachrysoside A, were isolated using various chromatography methods. The compounds were identified via extensive high resolution electrospray ionisation mass spectrometry (HRESIMS) and NMR analyses. Both saponins were examined for their possible antioxidant and neuroprotective activity in three different in vitro models. Rat brain synaptosomes, mitochondria, and microsomes were isolated via centrifugation using Percoll gradient. They were treated with the compounds in three different concentrations alone, and in combination with 6-hydroxydopamine or tert-butyl hydroperoxide as toxic agents. It was found that the compounds had statistically significant dose-dependent in vitro protective activity on the sub-cellular fractions. The compounds exhibited a weak inhibitory effect on the enzyme activity of human recombinant monoamine oxidase type B (hMAO-B), compared to selegiline.

18.
Z Naturforsch C J Biosci ; 77(3-4): 167-175, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-34674410

RESUMEN

MAO-A inhibitors are used in the treatment of depression. There are many studies showing that the thiazolyl-hydrazone structure is a pharmacophore structure for the MAO enzyme. In previous studies by our team, activity studies were carried out with thiazolyl-hydrazone derivatives containing pyrrolidine, morpholine, and piperazine. All of them were displayed MAO-A selective inhibition profile. Additionally, derivatives containing piperazine ring were most active. For this purpose, thiazolyl-hydrazone derivatives containing piperazine were synthesized, but this time an active group, formyl group, was added to the piperazine ring as a substituent. Based on this view, new thiazolyl-hydrazone compounds were synthesized, characterized, and screened for their hMAO-A and hMAO-B inhibitory activity by an in vitro fluorometric method. The structure of the compound was tried to be fully elucidated using 2D NMR technique. The compound including 2,4-dimethyl substituent (3i) were found to be the most effective agents in the series against MAO-A enzyme with the IC50 value of 0.080 ± 0.003 µM. The docking study of compound 3i revealed that there is a strong interaction between the active sites of hMAO-A and analyzed compound.


Asunto(s)
Hidrazonas , Monoaminooxidasa , Hidrazonas/química , Hidrazonas/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Piperazina , Relación Estructura-Actividad
19.
Neurosci Lett ; 786: 136803, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35842207

RESUMEN

Monoamine oxidase-B (MAO-B) is a flavin-dependent enzyme involved in various neurodegenerative disorders. Here, a dataset of 142 chalcone derivatives, collected from various natural plants, was screened by combining structure-based virtual screening and ADMET approaches. The goal is to discover novel natural chalcones as potential MAO-B inhibitors. With the help of the Gaussian 09.5 software, the 3D chemical structures of compounds were optimized using the DFT method. The 3D structure of the hMAO-B enzyme was built using the Modeller software. The optimized structures were subjected to virtual screening by Autodock Vina, implicated in PyRx software. Among the 142 natural substances, 43 were selected based on their binding affinity. Then, the pharmacokinetic proprieties and toxicity of these compounds were evaluated using ADMET analysis. Ten compounds were predicted to have ADMET characteristics with no side effects. The binding modes and interactions of the top selected compounds were then evaluated using AutoDock 4.2. Compounds P60 and P81 were found to be potential inhibitors of MAO-B compared to rasagiline, safinamid, and selegiline, the reference drugs. The stability of the selected compounds was confirmed by MD simulation. Based on this finding, compounds P60 and P81 could be considered potential hMAO-B inhibitors.


Asunto(s)
Chalconas , Monoaminooxidasa , Chalconas/química , Chalconas/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Relación Estructura-Actividad
20.
ChemMedChem ; 15(6): 532-538, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32037726

RESUMEN

The frequency, complexity and morbidity of neurodegenerative diseases make them a great challenge for nowadays medicine. Most of the treatments currently used for Parkinson's disease - the second most prevalent - are only symptomatic. Therefore, it is urgent to develop drugs that are able to act simultaneously on different targets, being able to stop neuronal death and promote the recovery of neuronal populations already affected. In this work, we studied the activity of a series of hybrid molecules, which combine the structure of both coumarin and an alkynylamine group inspired on rasagiline, as MAO inhibitors, antioxidants and neuroprotective agents. Half of the studied hybrids turned out to be selective monoamine oxidase B (hMAO-B) inhibitors in the low micro/nanomolar range, demonstrating that positions 3 (compounds 1-3) and 7 (compounds 8 and 10) of the coumarin scaffold are the most suitable for the incorporation of the alkynylamine chain. All the studied compounds proved to be capable of neutralizing free radicals (DPPH). Finally, the 4-(but-2-yn-1-ylamino)coumarin (5) showed neuroprotective effects on glial cells and the 4-methyl-7-(pent-2-yn-1-ylamino)coumarin (8) inhibited intraneuronal ROS production as well.


Asunto(s)
Antioxidantes/farmacología , Cumarinas/farmacología , Indanos/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/farmacología , Animales , Antioxidantes/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Células Cultivadas , Cumarinas/química , Femenino , Humanos , Peróxido de Hidrógeno/antagonistas & inhibidores , Peróxido de Hidrógeno/farmacología , Indanos/química , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Lipopolisacáridos/antagonistas & inhibidores , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Estrés Oxidativo/efectos de los fármacos , Picratos/antagonistas & inhibidores , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA