Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Anim Ecol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045801

RESUMEN

Birds, bats and ants are recognised as significant arthropod predators. However, empirical studies reveal inconsistent trends in their relative roles in top-down control across strata. Here, we describe the differences between forest strata in the separate effects of birds, bats and ants on arthropod densities and their cascading effects on plant damage. We implemented a factorial design to exclude vertebrates and ants in both the canopy and understorey. Additionally, we separately excluded birds and bats from the understorey using diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and assessed herbivory damage. Arthropods responded similarly to predator exclusion across forest strata, with a density increase of 81% on trees without vertebrates and 53% without both vertebrates and ants. Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod density or herbivory damage across strata. Our results reveal that the effects of birds and bats on arthropod density and herbivory damage are similar between the forest canopy and understorey in this temperate forest. In addition, ants were not found to be significant predators in our system. Furthermore, birds, bats and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining ecological balance across different strata of a temperate forest.

2.
Environ Exp Bot ; 100: 55-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29367790

RESUMEN

Plant volatile organic compounds (VOCs) elicited in response to herbivory can serve as cues for parasitic and predatory insects, but the modification of VOC elicitation responses under interacting abiotic stresses is poorly known. We studied foliage VOC emissions in the deciduous tree Alnus glutinosa induced by feeding by the larvae of green alder sawfly (Monsoma pulveratum) under well-watered and drought-stressed conditions. Drought strongly curbed photosynthesis rate and stomatal conductance, but there were no effects of insect feeding on photosynthetic characteristics. Feeding induced emissions of volatile products of lipoxygenase pathway and monoterpenes, and emissions of stress marker compounds (E)-ß-ocimene and homoterpene DMNT. The emissions were more strongly elicited and reached a maximum value earlier in drought-stressed plants. In addition, methyl salicylate emissions were elicited in herbivory-fed drought-stressed plants. Herbivores were more strongly attracted to well-watered plants and consumed more than a four-fold greater fraction of leaf area than they consumed from drought-treated plants. Overall, this study demonstrates an important priming effect of drought, suggesting that plants under combined drought/herbivory stress are more resistant to herbivores.

3.
Metabolites ; 13(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37233657

RESUMEN

Murtilla (Ugni molinae) is a shrub native to Chile that has undergone an incipient domestication process aimed at increasing its productivity. The reduction in intrinsic chemical defenses due to the domestication process has resulted in a decrease in the plant's ability to defend itself against mechanical or insect damage. In response to this damage, plants release volatile organic compounds (VOCs) as a means of defense. To understand how domestication has impacted the production of VOCs in the first offspring of murtilla, we hypothesized that their levels would be reduced due to the induction of mechanical and herbivore damage. To test this hypothesis, we collected VOCs from four offspring ecotypes and three wild relatives of murtilla. We induced mechanical and herbivore damage in the plants and then enclosed them in a glass chamber, where we captured the VOCs. We identified 12 compounds using GC-MS. Our results showed that wild relative ecotypes had a higher VOC release rate of 624.6 µg/cm2/day. Herbivore damage was the treatment that produced the highest release of VOCs, with 439.3 µg/cm2/day in wild relatives. These findings suggest that herbivory triggers defenses through the emission of VOCs, and that domestication has influenced the production of these compounds in murtilla. Overall, this study contributes to bridging the gap in the incipient domestication history of murtilla and highlights the importance of considering the impact of domestication on a plant's chemical defenses.

4.
Plants (Basel) ; 12(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005736

RESUMEN

Anthropogenic disturbance of tropical humid forests leads to habitat loss, biodiversity decline, landscape fragmentation, altered nutrient cycling and carbon sequestration, soil erosion, pest/pathogen outbreaks, among others. Nevertheless, the impact of these alterations in multitrophic interactions, including host-pathogen and vector-pathogen dynamics, is still not well understood in wild plants. This study aimed to provide insights into the main drivers for the incidence of herbivory and plant pathogen damage, specifically, into how vegetation traits at the local and landscape scale modulate such interactions. For this purpose, in the tropical forest of Calakmul (Campeche, Mexico), we characterised the foliar damage caused by herbivores and pathogens in woody vegetation of 13 sampling sites representing a gradient of forest disturbance and fragmentation in an anthropogenic landscape from well preserved to highly disturbed and fragmented areas. We also evaluated how the incidence of such damage was modulated by the vegetation and landscape attributes. We found that the incidence of damage caused by larger, mobile, generalist herbivores, was more sensitive to changes in landscape configuration, while the incidence of damage caused by small and specialised herbivores with low dispersal capacity was more influenced by vegetation and landscape composition. In relation to pathogen symptoms, the herbivore-induced foliar damage seems to be the main factor related to their incidence, indicating the enormous importance of herbivorous insects in the modulation of disease dynamics across tropical vegetation, as they could be acting as vectors and/or facilitating the entry of pathogens by breaking the foliar tissue and the plant defensive barriers. The incidence of pathogen damage also responded to vegetation structure and landscape configuration; the incidence of anthracnose, black spot, and chlorosis, for example, were favoured in sites surrounded by smaller patches and a higher edge density, as well as those with a greater aggregation of semi-evergreen forest patches. Fungal pathogens were shown to be an important cause of foliar damage for many woody species. Our results indicate that an increasing transformation and fragmentation of the tropical forest of southern Mexico could reduce the degree of specialisation in plant-herbivore interactions and enhance the proliferation of generalist herbivores (chewers and scrapers) and of mobile leaf suckers, and consequently, the proliferation of some symptoms associated with fungal pathogens such as fungus black spots and anthracnose. The symptoms associated with viral and bacterial diseases and to nutrient deficiency, such as chlorosis, could also increase in the vegetation in fragmented landscapes with important consequences in the health and productivity of wild and cultivated plant species. This is a pioneering study evaluating the effect of disturbances on multitrophic interactions, offering key insights on the main drivers of the changes in herbivory interactions and incidence of plant pathogens in tropical forests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA