Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917025

RESUMEN

Dominant missense mutations of the calcium-permeable cation channel TRPV4 cause Charcot-Marie-Tooth disease (CMT) type 2C and two forms of distal spinal muscular atrophy. These conditions are collectively referred to as TRPV4-related neuromuscular disease and share features of motor greater than sensory dysfunction and frequent vocal fold weakness. Pathogenic variants lead to gain of ion channel function that can be rescued by TRPV4 antagonists in cellular and animal models. As small molecule TRPV4 antagonists have proven safe in trials for other disease indications, channel inhibition is a promising therapeutic strategy for TRPV4 patients. However, the current knowledge of the clinical features and natural history of TRPV4-related neuromuscular disease is insufficient to enable rational clinical trial design. To address these issues, we developed a TRPV4 patient database and administered a TRPV4-specific patient questionnaire. Here, we report demographic and clinical information, including CMT examination scores (CMTES), from 68 patients with known pathogenic TRPV4 variants, 40 of whom also completed the TRPV4 patient questionnaire. TRPV4 patients showed a bimodal age of onset, with the largest peak occurring in the first 2 years of life. Compared to CMT1A patients, TRPV4 patients showed distinct symptoms and signs, manifesting more ambulatory difficulties and more frequent involvement of proximal arm and leg muscles. Although patients reported fewer sensory symptoms, sensory dysfunction was often detected clinically. Many patients were affected by vocal fold weakness (55%) and shortness of breath (55%), and 11% required ventilatory support. Skeletal abnormalities were common, including scoliosis (64%), arthrogryposis (33%), and foot deformities. Strikingly, patients with infantile onset of disease showed less sensory involvement and less progression of symptoms. These results highlight distinctive clinical features in TRPV4 patients, including motor-predominant disease, proximal arm and leg weakness, severe ambulatory difficulties, vocal fold weakness, respiratory dysfunction, and skeletal involvement. In addition, patients with infantile onset of disease appeared to have a distinct phenotype with less apparent disease progression based on CMTES. These collective observations indicate that clinical trial design for TRPV4-related neuromuscular disease should include outcome measures that reliably capture non-length dependent motor dysfunction, vocal fold weakness, and respiratory disease.

2.
J Biol Chem ; 299(2): 102839, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36581210

RESUMEN

Data from gnomAD indicate that a missense mutation encoding the T118M variation in human peripheral myelin protein 22 (PMP22) is found in roughly one of every 75 genomes of western European lineage (1:120 in the overall human population). It is unusual among PMP22 variants that cause Charcot-Marie-Tooth (CMT) disease in that it is not 100% penetrant. Here, we conducted cellular and biophysical studies to determine why T118M PMP22 predisposes humans to CMT, but with only incomplete penetrance. We found that T118M PMP22 is prone to mistraffic but differs even from the WT protein in that increased expression levels do not result in a reduction in trafficking efficiency. Moreover, the T118M mutant exhibits a reduced tendency to form large intracellular aggregates relative to other disease mutants and even WT PMP22. NMR spectroscopy revealed that the structure and dynamics of T118M PMP22 resembled those of WT. These results show that the main consequence of T118M PMP22 in WT/T118M heterozygous individuals is a reduction in surface-trafficked PMP22, unaccompanied by formation of toxic intracellular aggregates. This explains the incomplete disease penetrance and the mild neuropathy observed for WT/T118M CMT cases. We also analyzed BioVU, a biobank linked to deidentified electronic medical records, and found a statistically robust association of the T118M mutation with the occurrence of long and/or repeated episodes of carpal tunnel syndrome. Collectively, our results illuminate the cellular effects of the T118M PMP22 variation leading to CMT disease and indicate a second disorder for which it is a risk factor.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de la Mielina , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Mutación Missense , Proteínas de la Mielina/genética , Predisposición Genética a la Enfermedad
3.
Mol Genet Metab ; 139(4): 107630, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392700

RESUMEN

Primary coenzyme Q10 (CoQ10) deficiency is a group of inborn errors of metabolism caused by defects in CoQ10 biosynthesis. Biallelic pathogenic variants in COQ7, encoding mitochondrial 5-demethoxyubiquinone hydroxylase, have been reported in nine patients from seven families. We identified five new patients with COQ7-related primary CoQ10 deficiency, performed clinical assessment of the patients, and studied the functional effects of current and previously reported COQ7 variants and potential treatment options. The main clinical features included a neonatal-onset presentation with severe neuromuscular, cardiorespiratory and renal involvement and a late-onset disease presenting with progressive neuropathy, lower extremity weakness, abnormal gait, and variable developmental delay. Baker's yeast orthologue of COQ7, CAT5, is required for growth on oxidative carbon sources and cat5Δ strain demonstrates oxidative growth defect. Expression of wild-type CAT5 could completely rescue the defect; however, yeast CAT5 harboring equivalent human pathogenic variants could not. Interestingly, cat5Δ yeast harboring p.Arg57Gln (equivalent to human p.Arg54Gln), p.Arg112Trp (equivalent to p.Arg107Trp), p.Ile69Asn (equivalent to p.Ile66Asn) and combination of p.Lys108Met and p.Leu116Pro (equivalent to the complex allele p.[Thr103Met;Leu111Pro]) partially rescued the growth defects, indicating these variants are hypomorphic alleles. Supplementation with 2,4 dihydroxybenzoic acid (2,4-diHB) rescued the growth defect of both the leaky and severe mutants. Overexpression of COQ8 and 2,4-diHB supplementation synergistically restored oxidative growth and respiratory defect. Overall, we define two distinct disease presentations of COQ7-related disorder with emerging genotype-phenotype correlation and validate the use of the yeast model for functional studies of COQ7 variants.


Asunto(s)
Enfermedades Mitocondriales , Ubiquinona , Humanos , Recién Nacido , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Ubiquinona/metabolismo
4.
Muscle Nerve ; 67(4): 259-271, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36448457

RESUMEN

Small-fiber neuropathy (SFN) is a disorder that exclusively affects the small nerve fibers, sparing the large nerve fibers. Thinly myelinated Aδ-fibers and unmyelinated C-fibers are damaged, leading to development of neuropathic pain, thermal dysfunction, sensory symptoms, and autonomic disturbances. Although many SFNs are secondary and due to immunological causes or metabolic disturbances, the etiology is unknown in up to half of the patients. Over the years, this proportion of "idiopathic SFN" has decreased, as familial and genetic causes have been discovered, thus shifting a proportion of once "idiopathic" cases to the genetic category. After the discovery of SCN9A-gene variants in 2012, SCN10A and SCN11A variants have been found to be pathogenic in SFN. With improved accessibility of SFN diagnostic tools and genetic tests, many non-SCN variants and genetically inherited systemic diseases involving the small nerve fibers have also been described, but only scattered throughout the literature. There are 80 SCN variants described as causing SFN, 8 genes causing hereditary sensory autonomic neuropathies (HSAN) described with pure SFN, and at least 7 genes involved in genetically inherited systemic diseases associated with SFN. This systematic review aims to consolidate and provide an updated overview on the genetic variants of SFN to date---SCN genes and beyond. Awareness of these genetic causes of SFN is imperative for providing treatment directions, prognostication, and management of expectations for patients and their health-care providers.


Asunto(s)
Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Neuropatía de Fibras Pequeñas/patología , Neuralgia/etiología , Fibras Nerviosas Amielínicas/patología , Pruebas Genéticas , Causalidad , Canal de Sodio Activado por Voltaje NAV1.7/genética
5.
J Peripher Nerv Syst ; 28(3): 513-517, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37170477

RESUMEN

AIM: Hereditary neuropathy with liability to pressure palsies (HNPP) is a peripheral neuropathy with autosomal dominant inheritance. Diagnosis can be made from the characteristic abnormalities determined by nerve conduction studies (NCS), including subclinical deficits at physiological compression sites. Heterozygous deletion of the chromosome 17p11.2-p12 region including the peripheral myelin protein 22 gene (PMP22) is the cause in the majority of cases. However, the loss of function of PMP22 due to frameshift-causing insertion/deletion, missense, nonsense, or splice-site disrupting variants cause HNPP in some patients. We report a case of a patient diagnosed with HNPP on the basis of clinical features and the results of NCS. No deletions of PMP22 were detected by fluorescence in situ hybridization. METHODS: We performed direct nucleotide sequence analysis and identified a heterozygous variant, c.78 + 3G > T, in PMP22. Since this variant is located outside the canonical splice site at the exon 2-intron 2 junction, we investigated whether the variant causes aberrant splicing and leads to the skipping of exon 2 of PMP22 by in vitro minigene splicing assay. RESULTS: We demonstrated that the c.78 + 3G > T variant causes the skipping of exon 2 and leads to loss of function of the mutant allele. CONCLUSION: Searching for sequence variants located outside the canonical splice sites should also be considered even when deletion of PMP22 is not found in a patient with a clinical diagnosis suggesting HNPP.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Neuropatía Hereditaria Motora y Sensorial , Enfermedades del Sistema Nervioso Periférico , Humanos , Hibridación Fluorescente in Situ , Proteínas de la Mielina/genética , Enfermedades del Sistema Nervioso Periférico/genética , Parálisis , Enfermedad de Charcot-Marie-Tooth/genética
6.
Neurol Sci ; 44(7): 2551-2554, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36964315

RESUMEN

We report a patient with early-onset hereditary sensory and autonomic neuropathy type 1A (HSAN-1A) who developed a distinct phenotype, with tongue fasciculation and atrophy, due to a mutation at serine 331 in the SPTLC1 gene. HSAN-1A manifestation causing tongue fasciculation and atrophy have been rarely found. Our report adds to the growing evidence of the existence of an overlap between hereditary neuropathy and motor neuron disease caused by pathogenic p.S331Y variant in SPTLC1 gene.


Asunto(s)
Neuropatías Hereditarias Sensoriales y Autónomas , Enfermedad de la Neurona Motora , Humanos , Serina C-Palmitoiltransferasa/genética , Fasciculación , Fenotipo , Neuropatías Hereditarias Sensoriales y Autónomas/diagnóstico , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Mutación/genética , Enfermedad de la Neurona Motora/complicaciones , Enfermedad de la Neurona Motora/genética , Atrofia
7.
Medicina (Kaunas) ; 59(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37512004

RESUMEN

Background and Objectives: Ultrasound (US) is a non-invasive tool for the in vivo detection of peripheral nerve alterations. Materials and Methods: In this study, we applied nerve US to assist the discrimination between the spectrum of amyotrophic lateral sclerosis (ALS, n = 11), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 5), and genetically confirmed Charcot-Marie-Tooth disease (CMT, n = 5). All participants and n = 15 controls without neurological diseases underwent high-resolution US of the bilateral tibial nerve. The nerve cross-sectional area (CSA) and nerve microvascular blood flow were compared between the groups and related to cerebrospinal fluid (CSF) measures, clinical symptoms, and nerve conduction studies. The analyses are part of a larger multimodal study on the comparison between US and 7 Tesla (7T) magnetic resonance neurography (MRN). Results: The patients and controls were matched with respect to their demographical data. CMT had the longest disease duration, followed by CIDP and ALS. CSA was related to age, weight, and disease duration. CSA was larger in CMT and CIDP compared to ALS and controls. The blood flow was greatest in CIDP, and higher than in CMT, ALS, and controls. In ALS, greater CSA was correlated with greater CSF total protein and higher albumin quotient. The US measures did not correlate with clinical scores or nerve conduction studies in any of the subgroups. Conclusion: Our results point towards the feasibility of CSA and blood flow to discriminate between ALS, CIDP, and CMT, even in groups of small sample size. In ALS, larger CSA could indicate an inflammatory disease subtype characterized by reduced blood-nerve barrier integrity. Our upcoming analysis will focus on the additive value of 7T MRN in combination with US to disentangle the spectrum between more inflammatory or more degenerative disease variants among the disease groups.


Asunto(s)
Esclerosis Amiotrófica Lateral , Polineuropatías , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante , Humanos , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico por imagen , Esclerosis Amiotrófica Lateral/diagnóstico por imagen , Nervios Periféricos/diagnóstico por imagen , Polineuropatías/diagnóstico por imagen , Ultrasonografía/métodos
8.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(10): 1572-1582, 2023 Oct 28.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38432886

RESUMEN

OBJECTIVES: Hereditary neuropathy with liability to pressure palsy (HNPP) is a rare autosomal dominant peripheral neuropathy, usually caused by heterozygous deletion mutations in the peripheral myelin protein 22 (PMP22) gene. This study aims to investigate the clinical and molecular genetic characteristics of HNPP. METHODS: HNPP patients in the Department of Neurology at Third Xiangya Hospital of Central South University from 2009 to 2023 were included in this study. The general clinical data, nervous electrophysiological and molecular genetic examination results were collected and analyzed. Molecular genetic examination was to screen for deletion of PMP22 gene using multiplex ligation-dependent probe amplification (MLPA) after extracting genomic DNA from peripheral blood; and if no PMP22 deletion mutation was detected, next-generation sequencing was used to screen for PMP22 point mutations. The related literatures of HNPP were reviewed, and the clinical and molecular genetic characteristics of HNPP patients were analyzed. RESULTS: A total of 34 HNPP patients from 24 unrelated Chinese Han families were included in this study, including 25 males and 9 females. The average age at illness onset was 22.0 years. Sixty-two point five percent of the families had a positive family history. Among them, 30 patients had symptoms of peripheral nerve paralysis. Patients often presented with paroxysmal single limb weakness with (or) numbness (25/30), and some patients had paroxysmal unilateral recurrent laryngeal nerve (vagus nerve) paralysis (2/30). Physical examination revealed muscle weakness (23/29), hypoesthesia (9/29), weakened or absent ankle reflexes (20/29), distal limb muscle atrophy (8/29) and high arched feet (5/29). Most patients (26/30) could fully recover to normal after an acute attack. Thirty-one patients in our group underwent nervous electrophysiological examination, and showed multiple demyelinating peripheral neuropathies with both motor and sensory nerves involved. Most patients showed significantly prolonged distal motor latency (DML), mild to moderate nerve conduction velocity slowing, decreased amplitude of compound muscle action potential (CMAP) and sensory nerve action potential (SNAP), and sometimes with conduction block. Nerve motor conduction velocity was (48.5±5.5) m/s, and the CMAP amplitude was (8.4±5.1) mV. Nerve sensory conduction velocity was (37.4±10.5) m/s, and the SNAP amplitude was (14.4±15.2) µV. There were 24 families, 23 of whom had the classical PMP22 deletion, the last one had a heterozygous pathogenic variant in the PMP22 gene sequence (c.434delT). By reviewing clinical data and genetic testing results of reported 1 734 HNPP families, we found that heterozygous deletion mutation of PMP22 was the most common pathogenic mutation of HNPP (93.4%). Other patients were caused by PMP22 small mutations (4.0%), PMP22 heterozygous gross deletions (0.6%), and PMP22 complex rearrangements (0.1%). Thirty-eight sorts of HNPP-related PMP22 small mutations was reported, including missense mutations (10/38), nonsense mutations (4/38), base deletion mutations (13/38), base insertion mutations (3/38), and shear site mutations (8/38). HNPP patients most often presented with episodic painless single nerve palsy. Common peroneal nerve, ulnar nerve, and brachial plexus nerve were the most common involved nerves, accounting for about 75%. Only eighteen patients with cranial nerve involved was reported. CONCLUSIONS: Heterozygous deletion mutation of PMP22 is the most common pathogenic mutation of HNPP. Patients is characterized by episodic and painless peripheral nerve paralysis, mainly involving common peroneal nerve, ulnar nerve, and other peripheral nerves. Nervous electrophysiological examination has high sensitivity and specificity for the diagnosis of HNPP, which is manifested by extensive demyelinating changes. For patients with suspected HNPP, nervous electrophysiological examination and PMP22-MLPA detection are preferred. Sanger sequencing or next generation sequencing can be considered to detect other mutations of PMP22.


Asunto(s)
Artrogriposis , Neuropatía Hereditaria Motora y Sensorial , Enfermedades del Sistema Nervioso Periférico , Femenino , Masculino , Humanos , Adulto Joven , Adulto , Parálisis/genética , Pruebas Genéticas , Biología Molecular
9.
Neurol Sci ; 43(1): 705-707, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34532771

RESUMEN

We reported one patient with Charcot-Marie-Tooth type 4C (CMT4C) who developed seropositive myasthenia gravis. Neuromuscular junction alterations in CMT4C patients have not yet been reported. However, few patients have been reported to simultaneously have MG and CMT, but none with CMT4C. Our report suggests that additional research is required to confirm whether genetic neuropathies may predispose to MG.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Miastenia Gravis , Enfermedad de Charcot-Marie-Tooth/complicaciones , Humanos , Miastenia Gravis/complicaciones , Unión Neuromuscular
10.
Neurol Sci ; 43(1): 559-563, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33899151

RESUMEN

INTRODUCTION: In Charcot-Marie-Tooth type 1A (CMT1A) patients, daily life is mainly influenced by mobility and ambulation dysfunctions. The aim of our work was to evaluate the perception of disturbances that mostly impact on daily life in CMT1A patients and its difference on the basis of age, gender, disability, and quality of life. METHODS: Forty-one CMT1A patients underwent neurological assessment focused on establishing clinical disability through the Charcot-Marie-Tooth Neuropathy Score (CMTNS) and quality of life through the Short Form-36 (SF-36) questionnaire. We identified from CMT disturbances 5 categories [weakness in lower limbs (WLL), weakness in upper limbs (WUL), skeletal deformities (SD), sensory symptoms (SS), balance (B)] and patients classified the categories from the highest to the lowest impact on daily life (1: highest; 5: lowest). Ranking of the 5 categories, in the overall sample and in the different subgroups (dividing by gender, median of age and disease duration, CMTNS, domains of SF-36), was obtained and differences among subgroups were assessed using a bootstrap approach. RESULTS: Rank analysis showed that WLL was the most important disturbance on daily life whereas WUL had the lowest impact. In the older CMT1A group, the most important disturbance on daily life was B that was also the most relevant disturbance in patients with a greater disability. SD influenced daily life in younger patients. SS had less impact on daily life, with the exception of patients with a milder disability. DISCUSSION: Our findings demonstrated that the perception of disturbances that mostly impact on CMT1A patients' daily life changes over the lifetime and with degree of disability.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Personas con Discapacidad , Humanos , Examen Neurológico , Calidad de Vida , Caminata
11.
Hum Mutat ; 42(4): 460-472, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600046

RESUMEN

Hereditary lower motor neuron diseases (LMND) other than 5q-spinal muscular atrophy (5q-SMA) can be classified according to affected muscle groups. Proximal and distal forms of non-5q-SMA represent a clinically and genetically heterogeneous spectrum characterized by significant overlaps with axonal forms of Charcot-Marie-Tooth (CMT) disease. A consensus for the best approach to molecular diagnosis needs to be reached, especially in light of continuous novel gene discovery and falling costs of next-generation sequencing (NGS). We performed exome sequencing (ES) in 41 families presenting with non-5q-SMA or axonal CMT, 25 of which had undergone a previous negative neuromuscular disease (NMD) gene panel analysis. The total diagnostic yield of ES was 41%. Diagnostic success in the cohort with a previous NMD-panel analysis was significantly extended by ES, primarily due to novel gene associated-phenotypes and uncharacteristic phenotypic presentations. We recommend early ES for individuals with hereditary LMND presenting uncharacteristic or significantly overlapping features. As mitochondrial dysfunction was the underlying pathomechanism in 47% of the solved individuals, we highlight the sensitivity of the anterior horn cell and peripheral nerve to mitochondrial imbalance as well as the necessity to screen for mitochondrial disorders in individuals presenting predominant lower motor neuron symptoms.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Atrofia Muscular Espinal , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mitocondrias/genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética
12.
Muscle Nerve ; 64(4): 454-461, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34232518

RESUMEN

INTRODUCTION/AIMS: Advanced genetic testing including next-generation sequencing (AGT/NGS) has facilitated DNA testing in the clinical setting and greatly expanded new gene discovery for the Charcot-Marie-Tooth neuropathies and other hereditary neuropathies (CMT/HN). Herein, we report AGT/NGS results, clinical findings, and diagnostic yield in a cohort of CMT/HN patients evaluated at our neuropathy care center. METHODS: We reviewed the medical records of all patients with suspected CMT/HN who underwent AGT/NGS at the Hospital for Special Care from January 2017 through January 2020. Patients with variants reported as pathogenic or likely pathogenic were included for further clinical review. RESULTS: We ordered AGT/NGS on 108 patients with suspected CMT/HN. Of these, pathogenic or likely pathogenic variants were identified in 17 patients (diagnostic yield, 15.7%), including 6 (35%) with PMP22 duplications; 3 (18%) with MPZ variants; 2 (12%) with MFN2 variants; and 1 each with NEFL, IGHMBP2, GJB1, BSCL2, DNM2, and TTR variants. Diagnostic yield increased to 31.0% for patients with a positive family history. DISCUSSION: AGT/NGS panels can provide specific genetic diagnoses for a subset of patients with CMT/HN disorders, which improves disease and genetic counseling and prepares patients for disease-focused therapies. Despite these advancements, many patients with known or suspected CMT/HN disorders remain without a specific genetic diagnosis. Continued advancements in genetic testing, such as multiomic technology and better understanding of genotype-phenotype correlation, will further improve detection rates for patients with suspected CMT/HN disorders.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Enfermedad de Charcot-Marie-Tooth/genética , Pruebas Genéticas/métodos , Variación Genética/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Neuropatía Hereditaria Motora y Sensorial/diagnóstico , Neuropatía Hereditaria Motora y Sensorial/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto Joven
13.
J Peripher Nerv Syst ; 26(2): 231-234, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33987933

RESUMEN

Charcot-Marie-Tooth (CMT) diseases are a clinically and genetically heterogeneous group of disorders. Different variants in the neurofilament heavy chain (NEFH) gene have been described to cause the CMT2CC subtype. Here we report the first Italian patient affected by CMT2CC, harboring a novel variant in NEFH. In describing our patient, we also reviewed previously CMT2CC individuals, and suggested to consider NEFH variant if patients have an axonal sensory-motor neuropathy with a prominent proximal muscles involvement with early requirement of walking aids or wheelchair, remembering a motor neuron disorder.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedad de Charcot-Marie-Tooth/genética , Mutación del Sistema de Lectura/genética , Humanos , Italia , Proteínas de Neurofilamentos , Proteínas
14.
Acta Neurol Scand ; 144(6): 640-646, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34322872

RESUMEN

OBJECTIVES: Hereditary amyloidogenic transthyretin (ATTRv) amyloidosis is an autosomal dominant disorder caused by mutations of the transthyretin (TTR) gene. The mutant ATTRv protein causes a systemic accumulation of amyloid fibrils in various organs. TTR is an important protein in the central nervous system physiology for the maintenance of normal cognitive process during aging, amidated neuropeptide processing, and nerve regeneration. The neuroprotective effect of transthyretin has been widely documented in animal models. Cognitive consequences of the mutant TTR in hereditary ATTRv amyloidosis patients remain still to be elucidated. We designed this study to investigate the cognitive involvement in ATTRv amyloidosis. METHODS: Detailed neuropsychological tests and cranial MRIs were performed. Biomarkers including amyloid beta 1-42, total tau, and phosphorylated tau were investigated in the cerebrospinal fluid samples. RESULTS: Median age of the cohort was 52 years (ranges 34-72). Neuropsychological assessment results were compatible with impaired executive functions (in all patients except one with only bilateral carpal tunnel syndrome, long-term visual and long-term verbal memory (severe in four patients and moderate in one). Visuospatial judgment and perception were impaired in six. Mean cerebrospinal fluid Aß1-42 (pg/ml) was 878.0 ± 249.5 in patients with cortical atrophyin MRI whereas 1210.0 ± 45.9 in patients without any cortical atrophy. Cranial MRI showed cortical atrophy in six patients (6/10). CONCLUSION: Our data showed the significance of the TTR protein in cognitive functions and highlighted the importance of the close follow-up of cognitive functions in ATTRv amyloidosis patients.


Asunto(s)
Neuropatías Amiloides Familiares , Péptidos beta-Amiloides , Adulto , Anciano , Neuropatías Amiloides Familiares/complicaciones , Neuropatías Amiloides Familiares/diagnóstico por imagen , Neuropatías Amiloides Familiares/genética , Cognición , Humanos , Persona de Mediana Edad , Prealbúmina/genética
15.
J Med Genet ; 57(4): 283-288, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31439721

RESUMEN

BACKGROUND: Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous disorder of the peripheral nervous system. Biallelic variants in SLC12A6 have been associated with autosomal-recessive hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC). We identified heterozygous de novo variants in SLC12A6 in three unrelated patients with intermediate CMT. METHODS: We evaluated the clinical reports and electrophysiological data of three patients carrying de novo variants in SLC12A6 identified by diagnostic trio exome sequencing. For functional characterisation of the identified variants, potassium influx of mutated KCC3 cotransporters was measured in Xenopus oocytes. RESULTS: We identified two different de novo missense changes (p.Arg207His and p.Tyr679Cys) in SLC12A6 in three unrelated individuals with early-onset progressive CMT. All presented with axonal/demyelinating sensorimotor neuropathy accompanied by spasticity in one patient. Cognition and brain MRI were normal. Modelling of the mutant KCC3 cotransporter in Xenopus oocytes showed a significant reduction in potassium influx for both changes. CONCLUSION: Our findings expand the genotypic and phenotypic spectrum associated with SLC12A6 variants from autosomal-recessive HMSN/ACC to dominant-acting de novo variants causing a milder clinical presentation with early-onset neuropathy.


Asunto(s)
Agenesia del Cuerpo Calloso/genética , Enfermedad de Charcot-Marie-Tooth/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Enfermedades del Sistema Nervioso Periférico/genética , Simportadores/genética , Adolescente , Edad de Inicio , Agenesia del Cuerpo Calloso/diagnóstico por imagen , Agenesia del Cuerpo Calloso/patología , Enfermedad de Charcot-Marie-Tooth/diagnóstico por imagen , Enfermedad de Charcot-Marie-Tooth/patología , Niño , Femenino , Genotipo , Neuropatías Hereditarias Sensoriales y Autónomas/diagnóstico por imagen , Neuropatías Hereditarias Sensoriales y Autónomas/patología , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Mutación , Linaje , Enfermedades del Sistema Nervioso Periférico/diagnóstico por imagen , Enfermedades del Sistema Nervioso Periférico/patología , Fenotipo
16.
J Neurosci ; 39(27): 5404-5418, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31061090

RESUMEN

The absence of functional peripheral myelin protein 22 (PMP22) is associated with shortened lifespan in rodents and severe peripheral nerve myelin abnormalities in several species including humans. Schwann cells and nerves from PMP22 knock-out (KO) mice show deranged cholesterol distribution and aberrant lipid raft morphology, supporting an unrecognized role for PMP22 in cellular lipid metabolism. To examine the mechanisms underlying these abnormalities, we studied Schwann cells and nerves from male and female PMP22 KO mice. Whole-cell current-clamp recordings in cultured Schwann cells revealed increased membrane capacitance and decreased membrane resistance in the absence of PMP22, which was consistent with a reduction in membrane cholesterol. Nerves from PMP22-deficient mice contained abnormal lipid droplets, with both mRNA and protein levels of apolipoprotein E (apoE) and ATP-binding cassette transporter A1 (ABCA1) being highly upregulated. Despite the upregulation of ABCA1 and apoE, the absence of PMP22 resulted in reduced localization of the transporter to the cell membrane and diminished secretion of apoE. The absence of PMP22 also impaired ABCA1-mediated cholesterol efflux capacity. In nerves from ABCA1 KO mice, the expression of PMP22 was significantly elevated and the subcellular processing of the overproduced protein was aberrant. In wild-type samples, double immunolabeling identified overlapping distribution of PMP22 and ABCA1 at the Schwann cell plasma membrane and the two proteins were coimmunoprecipitated from Schwann cell and nerve lysates. Together, these results reveal a novel role for PMP22 in regulating lipid metabolism and cholesterol trafficking through functional interaction with the cholesterol efflux regulatory protein ABCA1.SIGNIFICANCE STATEMENT Understanding the subcellular events that underlie abnormal myelin formation in hereditary neuropathies is critical for advancing therapy development. Peripheral myelin protein 22 (PMP22) is an essential peripheral myelin protein because its genetic abnormalities account for ∼80% of hereditary neuropathies. Here, we demonstrate that in the absence of PMP22, the cellular and electrophysiological properties of the Schwann cells' plasma membrane are altered and cholesterol trafficking and lipid homeostasis are perturbed. The molecular mechanisms for these abnormalities involve a functional interplay among PMP22, cholesterol, apolipoprotein E, and the major cholesterol-efflux transporter protein ATP-binding cassette transporter A1 (ABCA1). These findings establish a critical role for PMP22 in the maintenance of cholesterol homeostasis in Schwann cells.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Membrana Celular/metabolismo , Colesterol/metabolismo , Metabolismo de los Lípidos , Proteínas de la Mielina/metabolismo , Células de Schwann/metabolismo , Animales , Transporte Biológico , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Masculino , Potenciales de la Membrana , Ratones Noqueados , Proteínas de la Mielina/genética , Neuronas/metabolismo
17.
Neurogenetics ; 21(4): 301-304, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32488727

RESUMEN

Mutations in myotubularin-related protein 2 (MTMR2) were shown to underlie Charcot-Marie-Tooth type 4B1 (CMT4B1) disease, a rare autosomal recessive demyelinating neuropathy, characterized by severe early-onset motor and sensory neuropathy. We describe three siblings of consanguineous kindred presenting with hypotonia, reduced muscle tone, action tremor, dysmetria, areflexia, and skeletal deformities, consistent with a diagnosis of CMT. Whole-exome sequencing identified a novel homozygous c.336_337 insertion mutation in MTMR2, resulting in a frameshift and putative truncated protein. In this concise report, we discuss the clinical presentation of this rare disease and support the limited number of observations regarding the pathogenesis of MTMR2-related neuropathies.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Homocigoto , Mutación , Enfermedades del Sistema Nervioso/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Biopsia , Consanguinidad , Salud de la Familia , Femenino , Humanos , Masculino , Músculos/patología , Linaje , Fenotipo , Análisis de Secuencia de ADN , Secuenciación del Exoma
18.
Clin Genet ; 98(2): 185-190, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32506583

RESUMEN

Diagnostic yield of genetic studies for Charcot-Marie-Tooth disease (CMT) is little known, with a lack of epidemiological data to build better diagnostic strategies outside the United States and Europe. We aimed to evaluate the performance of two molecular diagnostic strategies for patients with CMT, and to characterize epidemiological findings of these conditions in southern Brazil. We performed a single-center cross-sectional study, in which 94 patients (55 families) with CMT suspicion were evaluated. Overall, the diagnostic yield of the combined strategy of Multiplex-ligation-dependent-probe-amplification (MLPA) of PMP22/GJB1/MPZ and GJB1/MPZ/PMP22 Sanger sequencing was 63.6% (28/44) for index cases with demyelinating/intermediate CMT suspicion (21 CMT1A-PMP22, 5 CMTX1-GJB1 and 2 with probably CMT1B-MPZ diagnosis). Five of the 11 index cases (45.4%) with axonal CMT had at least a possible diagnosis with next generation sequencing (NGS) panel of 104 inherited neuropathies-related genes (one each with CMT1A-PMP22, CMT2A-MFN2, CMT2K-GDAP1, CMT2U-MARS, CMT2W-HARS1). Detailed clinical, neurophysiological and molecular data of families are provided. Sequential molecular diagnosis strategies with MLPA plus target Sanger sequencing for demyelinating/intermediate CMT had high diagnostic yield, and almost half of axonal CMT families had at least a possible diagnosis with the comprehensive NGS panel. Most frequent subtypes of CMT in our region are CMT1A-PMP22 and CMTX1-GJB1.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/diagnóstico , Conexinas/genética , Proteína P0 de la Mielina/genética , Proteínas de la Mielina/genética , Adulto , Brasil/epidemiología , Enfermedad de Charcot-Marie-Tooth/clasificación , Enfermedad de Charcot-Marie-Tooth/epidemiología , Enfermedad de Charcot-Marie-Tooth/genética , Femenino , Humanos , Masculino , Reacción en Cadena de la Polimerasa Multiplex/métodos , Mutación , Patología Molecular/métodos , Análisis de Secuencia de ADN , Proteína beta1 de Unión Comunicante
19.
J Peripher Nerv Syst ; 25(1): 19-26, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31919945

RESUMEN

Hereditary neuropathies may be misdiagnosed with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). A correct diagnosis is crucial for avoiding unnecessary therapies and access genetic counseling. We report on nine patients (seven men, mean age 49.2 ± 16.1) diagnosed with and treated as CIDP, in whom mutations or variants of unknown significance (VUS) in genes associated with hereditary neuropathies were reported. All underwent neurological and neurophysiological examination, eight also cerebrospinal fluid (CSF) analysis. In 4/9, nerve ultrasound and/or MR-neurography were performed. All the patients complained of progressive upper or lower limbs sensory-motor symptoms, with heterogeneous disease duration (1-34 years, mean 8.6 ± 10.8). Neurophysiology showed demyelinating signs in seven patients, mixed findings with predominant axonal damage in two patients. Neuroimaging disclosed diffuse abnormalities at proximal and distal segments. Molecular screening showed PMP22 duplication in two patients, mutations in the MPZ, EGR2, and GJB1 genes were reported in each of the remaining patients. The two patients with mixed neurophysiological findings had p.Val30Met mutation in the transthyretin gene. Two patients had VUS in the MARS and HSPB1 genes. Four patients had partial response to immunomodulant therapies, and CSF and neurophysiological features suggesting an inflammatory condition concomitant with the hereditary neuropathy. Hereditary neuropathy may be misdiagnosed with CIDP. The most common pitfalls are CSF (high protein levels and oligoclonal bands), incorrect interpretation of neurophysiology, and transient benefit from therapies. Neuroimaging may be helpful in cases with atypical presentations or when severe axonal damage complicate the neurophysiological interpretation.


Asunto(s)
Errores Diagnósticos , Neuropatía Hereditaria Motora y Sensorial/diagnóstico , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Adulto , Anciano , Femenino , Neuropatía Hereditaria Motora y Sensorial/líquido cefalorraquídeo , Neuropatía Hereditaria Motora y Sensorial/tratamiento farmacológico , Neuropatía Hereditaria Motora y Sensorial/fisiopatología , Humanos , Factores Inmunológicos/farmacología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/líquido cefalorraquídeo , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/tratamiento farmacológico , Guías de Práctica Clínica como Asunto , Ultrasonografía
20.
J Peripher Nerv Syst ; 25(3): 223-229, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32639100

RESUMEN

Mutations in the HSPB1 gene are associated with Charcot-Marie-Tooth (CMT) disease type 2F (CMT2F) and distal hereditary motor neuropathy type 2 (dHMN2). More than 18 pathogenic mutations spanning across the whole HSPB1 gene have been reported. Three family members with a novel p.P57S (c.169C>T) HSPB1 mutation resulting in a late onset axonal neuropathy with heterogeneous clinical and electrophysiological features are detailed. We systematically reviewed published case reports and case series on HSPB1 mutations. While a genotype-phenotype correlation was not obvious, we identified a common phenotype, which included adult onset, male predominance, motor more frequently than sensory involvement, distal and symmetric distribution with preferential involvement of plantar flexors, and a motor and axonal electrophysiological picture.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA