Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 16(11): 7142-7147, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27685639

RESUMEN

The atomic structure, stability, and dynamics of defects in hexagonal boron nitride (h-BN) are investigated using an aberration-corrected transmission electron microscope operated at 80 kV between room temperature and 1000 °C. At temperatures above 700 °C, parallelogram- and hexagon-shaped defects with zigzag edges become prominent, in contrast to the triangular defects typically observed at lower temperatures. The appearance of 120° corners at defect vertices indicates the coexistence of both N- and B-terminated zigzag edges in the same defect. In situ dynamics studies show that the hexagonal holes grow by electron-induced sputtering of B-N chains, and that at high temperatures these chains can migrate from one defect corner to another. We complement the experiments with first-principles calculation which consider the thermal equilibrium formation energy of different defect configurations. It is shown that, below a critical defect size, hexagonal defects have the lowest formation energy and therefore are the more-stable configuration, and triangular defects are energetically metastable but can be "frozen in" under experimental conditions. We also discuss the possible contributions of several dynamic processes to the temperature-dependent defect formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA