Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 424
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-24, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38957008

RESUMEN

Consumers are increasingly interested in additive-free products with a fresh taste, leading to a growing trend in high pressure processing (HPP) as an alternative to thermal processing. This review explores the impact of HPP on the properties of juices, smoothies, and purees, as well as its practical applications in the food industry. Research findings have explained that HPP is a most promising technology in comparison to thermal processing, in two ways i.e., for ensuring microbial safety and maximum retention of micro and macro nutrients and functional components. HPP preserves natural color and eliminates the need for artificial coloring. The review also emphasizes its potential for enhancing flavor in the beverage industry. The review also discusses how HPP indirectly affects plant enzymes that cause off-flavors and suggests potential hurdle approaches for enzyme inactivation based on research investigations. Scientific studies regarding the improved quality insights on commercially operated high pressure mechanisms concerning nutrient retention have paved the way for upscaling and boosted the market demand for HPP equipment. In future research, the clear focus should be on scientific parameters and sensory attributes related to consumer acceptability and perception for better clarity of the HPP effect on juice and smoothies/purees.

2.
Food Microbiol ; 120: 104481, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431327

RESUMEN

In this study, the tetracycline resistance of Enterococcus faecalis strains isolated from food was determined and molecular analyses of the resistance background were performed by determining the frequency of selected tetracycline resistance genes. In addition, the effect of high-pressure stress (400 and 500 MPa) on the expression of selected genes encoding tetracycline resistance was determined, as well as changes in the frequency of transfer of these genes in isolates showing sensitivity to tetracyclines. In our study, we observed an increase in the expression of genes encoding tetracyclines, especially the tet(L) gene, mainly under 400 MPa pressure. The study confirmed the possibility of transferring genes encoding tetracyclines such as tet(M), tet(L), tet(K), tet(W) and tet(O) by horizontal gene transfer in both control strains and exposed to high-pressure. Exposure of the strains to 400 MPa pressure had a greater effect on the possibility of gene transfer and expression than the application of a higher-pressure. To our knowledge, this study for the first time determined the effect of high-pressure stress on the expression of selected genes encoding tetracycline resistance, as well as the possibility and changes in the frequency of transfer of these genes in Enterococcus faecalis isolates showing sensitivity to tetracyclines and possessing silent genes. Due to the observed possibility of increased expression of some of the genes encoding tetracycline resistance and the possibility of their spread by horizontal gene transfer to other microorganisms in the food environment, under the influence of high-pressure processing in strains phenotypically susceptible to this antibiotic, it becomes necessary to monitor this ability in isolates derived from foods.


Asunto(s)
Enterococcus faecalis , Resistencia a la Tetraciclina , Enterococcus faecalis/genética , Resistencia a la Tetraciclina/genética , Antibacterianos/farmacología , Tetraciclina/farmacología , Tetraciclinas/farmacología , Pruebas de Sensibilidad Microbiana
3.
J Dairy Sci ; 107(1): 74-90, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37709025

RESUMEN

Due to its versatility and shelf stability, process cheese is gaining interest in many developing countries. The main structural component (base) of most processed cheese formulations is young Cheddar cheese that has high levels of intact casein. Exporting natural Cheddar cheese base from the United States to distant overseas markets would require the aging process to be slowed or reduced. As Cheddar cheese ripens, the original structure is broken down by proteolysis and solubilization of insoluble calcium phosphate. We explored the effect of varying rennet levels (we also used a less proteolytic rennet) and application of high-pressure processing (HPP) to Cheddar cheese, as we hoped these treatments might limit proteolysis and concomitant loss of intact casein. To try to retain high levels of insoluble Ca, all experimental cheeses were made with a high-draining pH and from concentrated milk. To compare our intact casein results with current practices, we manufactured a Cheddar cheese that was prepared according to typical industry methods (i.e., use of unconcentrated milk, calf chymosin [higher levels], and low draining pH value [∼6.2]). All experimental cheeses were made from ultrafiltered milk with protein and casein contents of ∼5.15% and 4.30%, respectively. Three (low) rennet levels were used: control (38 international milk clotting units/mL of rennet per 250 kg of milk), and 25% and 50% reduced from this level. All experimental cheeses had similar moisture contents (∼37%) and total Ca levels. Four days after cheese was made, half of the experimental samples from each vat underwent HPP at 600 MPa for 3 min. Cheddar cheese functionality was monitored during aging for 240 d at 4°C. Cheddar cheese base was used to prepare process cheese after aging for 14, 60, 120, 180, and 240 d. Loss tangent (LT) values of cheese during heating were measured by small strain oscillatory rheology. Intact casein levels were measured using the Kjeldahl method. Acid or base titrations were used to determine the buffering capacity and insoluble Ca levels as a percentage of total Ca. The LTmax values (an index of meltability) in process cheese increased with aging for all the cheese bases; the HPP treatment significantly decreased LTmax values of both base (natural) and process cheeses. All experimental cheeses had much higher levels of intact casein compared with typical industry-make samples. Process cheese made from the experimental treatments had visually higher stretching properties than process cheese made from Cheddar with the typical industry-make procedure. Residual rennet activity was not affected by rennet level, but the rate of proteolysis was slightly slower with lower rennet levels. The HPP treatment of Cheddar cheese reduced residual rennet activity and decreased the reduction of intact casein levels. The HPP treatment of Cheddar cheese resulted in process cheeses that had slightly higher hardness values, lower LTmax values, and retained higher storage modulus values at 70°C. We also observed that the other make procedures we used in all experimental treatments (i.e., using a less proteolytic chymosin, using a concentrated cheese milk, and maintaining a high draining pH value) had a major effect on retaining high levels of intact casein.


Asunto(s)
Queso , Quimosina , Animales , Quimosina/química , Caseínas/química , Concentración de Iones de Hidrógeno , Queso/análisis , Péptido Hidrolasas/metabolismo , Leche/química , Manipulación de Alimentos/métodos , Reología
4.
J Dairy Sci ; 107(9): 6492-6510, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38762114

RESUMEN

The manufacturing method of string cheese is similar to mozzarella, but the hot curd is extruded through narrow tubes or pipes, which align the protein fibers that provide the characteristic ability for consumers to pull strings from this cheese. Firmness is another important performance attribute for consumers who just bite into the string cheese without peeling off strings. There have only been a few studies on string cheese, but it is known that stringiness and firmness decrease during prolonged storage, which is a particular challenge for exporting string cheese. We explored 2 treatments to try to retain the stringiness and firmness of string cheese for longer storage periods. The techniques used were high-pressure processing (HPP; 600 MPa for 3 min) and reduced storage temperature (0°C). In other cheese varieties, these techniques have helped extend the performance shelf life. We tested these techniques using the 2 main types of commercial string cheese: direct acid string cheese (DASC) and cultured string cheese (CSC), which were obtained from 2 different manufacturing facilities. The DASC had higher fat (∼2.2%) and higher pH values (∼0.2 units) compared with the CSC. The CSC had higher protein content (∼3.4%), higher insoluble calcium content (∼8 mg insoluble Ca/g protein) and higher texture profile analysis (TPA) hardness values (∼4 N) compared with the DASC. Due to the compositional differences, the 2 varieties were statistically analyzed separately for all other attributes. In both cheese types, HPP caused an immediate reduction in stringiness, some solubilization of insoluble calcium, and a slight increase in the cheese pH values. High-pressure processing also caused a slight increase in TPA hardness of the CSC samples until 14 d (possibly due to a slight increase in cheese pH). The use of the 0°C storage temperature reduced proteolysis and helped retain firmness during storage. Low-temperature storage could help extend the performance shelf life of string cheese by a couple of months, but HPP was not suitable, as the process caused an immediate reduction in stringiness due to the disruption of the matrix induced by the HPP treatment.


Asunto(s)
Queso , Manipulación de Alimentos , Presión , Queso/análisis , Animales , Temperatura , Concentración de Iones de Hidrógeno
5.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792161

RESUMEN

Olive oil production is characterized by large amounts of waste, and yet is considerably highly valued. Olive pomace can serve as a cheap source of bioactive compounds (BACs) with important antioxidant activity. Novel technologies like Pulsed Electric Fields (PEF) and High Pressure (HP) and microwave (MW) processing are considered green alternatives for the recovery of BACs. Different microwave (150-600 W), PEF (1-5 kV/cm field strength, 100-1500 pulses/15 µs width), and HP (250-650 MPa) conditions, in various product/solvent ratios, methanol concentrations, extraction temperatures, and processing times were investigated. Results indicated that the optimal MW extraction conditions were 300 W at 50 °C for 5 min using 60% v/v methanol with a product/solvent ratio of 1:10 g/mL. Similarly, the mix of 40% v/v methanol with olive pomace, treated at 650 MPa for the time needed for pressure build-up (1 min) were considered as optimal extraction conditions in the case of HP, while for PEF the optimal conditions were 60% v/v methanol with a product/solvent ratio of 1:10 g/mL, treated at 5000 pulses, followed by 1 h extraction under stirring conditions. Therefore, these alternative extraction technologies could assist the conventional practice in minimizing waste production and simultaneously align with the requirements of the circular bioeconomy concept.


Asunto(s)
Antioxidantes , Electricidad , Microondas , Olea , Presión , Olea/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Extractos Vegetales/química , Solventes/química , Aceite de Oliva/química , Metanol/química
6.
Compr Rev Food Sci Food Saf ; 23(1): e13281, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284572

RESUMEN

Seafood processing has traditionally been challenging due to the rapid spoilage rates and quality degradation of these products. With the rise of food science and technology, novel methods are being developed to overcome these challenges and improve seafood quality, shelf life, and safety. These methods range from high-pressure processing (HPP) to edible coatings, and their exploration and application in seafood processing are of great importance. This review synthesizes the recent advancements in various emerging technologies used in the seafood industry and critically evaluates their efficacy, challenges, and potential benefits. The technologies covered include HPP, ultrasound, pulsed electric field, plasma technologies, pulsed light, low-voltage electrostatic field, ozone, vacuum cooking, purified condensed smoke, microwave heating, and edible coating. Each technology offers unique advantages and presents specific challenges; however, their successful application largely depends on the nature of the seafood product and the desired result. HPP and microwave heating show exceptional promise in terms of quality retention and shelf-life extension. Edible coatings present a multifunctional approach, offering preservation and the potential enhancement of nutritional value. The strength, weakness, opportunity, and threat (SWOT) analysis indicates that, despite the potential of these technologies, cost-effectiveness, scalability, regulatory considerations, and consumer acceptance remain crucial issues. As the seafood industry stands on the cusp of a technological revolution, understanding these nuances becomes imperative for sustainable growth. Future research should focus on technological refinements, understanding consumer perspectives, and developing regulatory frameworks to facilitate the adoption of these technologies in the seafood industry.


Asunto(s)
Tecnología de Alimentos , Industria de Procesamiento de Alimentos , Valor Nutritivo , Culinaria , Alimentos Marinos
7.
J Food Sci Technol ; 61(9): 1632-1651, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39049911

RESUMEN

High-pressure processing (HPP) is a promising alternative to thermal pasteurization. Recent studies highlighted the effectivity of HPP (400-600 MPa and exposure times of 1-5 min) in reducing pathogenic microflora for up to 5 logs. Analysis of modern scientific sources has shown that pressure affects the main components of milk including fat globules, lactose, casein micelles. The behavior of whey proteins under HPP is very important for milk and dairy products. HPP can cause significant changes in the quaternary (> 150 MPa) and tertiary (> 200 MPa) protein structures. At pressures > 400 MPa, they dissolve in the following order: αs2-casein, αs1-casein, k-casein, and ß-casein. A similar trend is observed in the processing of whey proteins. HPP can affect the rate of milk fat adhering as cream with increased results at 100-250 MPa with time dependency while decreasing up to 70% at 400-600 MPa. Some studies indicated the lactose influencing casein on HP, with 10% lactose addition in case in suspension before exposing it to 400 MPa for 40 min prevents the formation of large casein micelles. Number of researches has shown that moderate pressures (up to 400 MPa) and mild heating can activate or stabilize milk enzymes. Pressures of 350-400 MPa for 100 min can boost the activity of milk enzymes by up to 140%. This comprehensive and critical review will benefit scientific researchers and industrial experts in the field of HPP treatment of milk and its effect on milk components.

8.
Crit Rev Food Sci Nutr ; : 1-15, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37243343

RESUMEN

High pressure processing (HPP) offers the benefits of safety, uniformity, energy-efficient, and low waste, which is widely applied for microbial inactivation and shelf-life extension for foods. Over the past forty years, HPP has been extensively researched in the food industry, enabling the inactivation or activation of different enzymes in future food by altering their molecular structure and active site conformation. Such activation or inactivation of enzymes effectively hinders the spoilage of food and the production of beneficial substances, which is crucial for improving food quality. This paper reviews the mechanism in which high pressure affects the stability and activity of enzymes, concludes the roles of key enzymes in the future food processed using high pressure technologies. Moreover, we discuss the application of modified enzymes based on high pressure, providing insights into the future direction of enzyme evolution under complex food processing conditions (e.g. high temperature, high pressure, high shear, and multiple elements). Finally, we conclude with prospects of high pressure technology and research directions in the future. Although HPP has shown positive effects in improving the future food quality, there is still a pressing need to develop new and effective combined processing methods, upgrade processing modes, and promote sustainable lifestyles.

9.
Lett Appl Microbiol ; 76(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37312402

RESUMEN

The objectives of this study were to determine the effect of high-pressure processing (HPP) on the survival of Listeria monocytogenes, Salmonella serotype Typhimurium, and Escherichia coli O157:H7 in egg salad and to evaluate the number of sub-lethally injured cells based on treatment conditions. HPP at 500 MPa for 30 s was sufficient for the complete inactivation of L. monocytogenes and Salm. Typhimurium directly plated on selective agar or plated after resuscitation, while 2 min treatment was required for E. coli O157:H7. HPP at 600 MPa for 30 s completely inactivated L. monocytogenes and Salm. Typhimurium, while 1 min treatment was needed for E. coli O157:H7. HPP at 400‒500 MPa injured a large number of pathogenic bacteria. No significant changes (P  > 0.05) in pH and color of egg salad were observed between HPP-treated and non-treated samples during 28 days of storage at refrigerated temperature. Our findings could be useful in predicting the HPP-mediated inactivation patterns of foodborne pathogens in egg salad for practical applications.


Asunto(s)
Listeria monocytogenes , Ensaladas , Escherichia coli , Microbiología de Alimentos , Conservación de Alimentos , Salmonella typhimurium , Recuento de Colonia Microbiana
10.
Food Microbiol ; 110: 104169, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36462825

RESUMEN

This study analyzed the effect of high-pressure processing on the changes in resistance phenotype and expression of antibiotic resistance genes among strains from commercial starter cultures. After exposure to high pressure the expression of genes encoding resistance to aminoglycosides (aac(6')Ie-aph(2″)Ia and aph(3')-IIIa) decreased and the expression of genes encoding resistance to tetracyclines (tetM and tetW), ampicillin (blaZ) and chloramphenicol (cat) increased. Expression changes differed depending on the pressure variant chosen. The results obtained in the gene expression analysis correlated with the results of the phenotype patterns. To the best of the authors' knowledge, this is one of the first studies focused on changes in antibiotic resistance associated with a stress response among strains from commercial starter cultures. The results suggest that the food preservation techniques might affect the phenotype of antibiotic resistance among microorganisms that ultimately survive the process. This points to the need to verify strains used in the food industry for their antibiotic resistance as well as preservation parameters to prevent the further increase in antibiotic resistance in food borne strains.


Asunto(s)
Ampicilina , Antibacterianos , Farmacorresistencia Microbiana , Expresión Génica , Fenotipo , Antibacterianos/farmacología
11.
Molecules ; 28(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36677758

RESUMEN

The quality standards for the export of chestnuts generate large quantities of rejected fruits, which require novel processing technologies for their safe industrial utilization. This study aimed to investigate the impact of high-pressure processing (HPP) and hydrothermal treatments (HT) on the physicochemical properties of rejected chestnut starch. Chestnuts were treated by HPP at 400, 500, and 600 MPa for 5 min and HT at 50 °C for 45 min. In general, all HPP treatments did not induce starch gelatinization, and their granules preserved the integrity and Maltese-cross. Moreover, starch granules' size and resistant starch content increased with the intensity of pressure. Native and HT chestnut starches were the most susceptible to digestion. HPP treatments did not affect the C-type crystalline pattern of native starch, but the crystalline region was gradually modified to become amorphous. HPP-600 MPa treated starch showed modified pasting properties and exhibited the highest values of peak viscosity. This study demonstrates for the first time that after HPP-600 MPa treatment, a novel chestnut starch gel structure is obtained. Moreover, HPP treatments could increase the slow-digesting starch, which benefits the development of healthier products. HPP can be considered an interesting technology to obtain added-value starch from rejected chestnut fruits.


Asunto(s)
Amilosa , Almidón , Almidón/química , Amilosa/química , Viscosidad , Nueces/química , Almidón Resistente/análisis
12.
J Food Sci Technol ; 60(11): 2705-2724, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37711574

RESUMEN

Thermal processing remains the key processing technology for food products. However, there are some limitations for thermal processing such as loss of sensory and nutritional quality. Furthermore, nowadays consumers are looking forward for fresh like products which are free from chemical preservatives, yet having longer shelf life. Thus, alternative processing techniques are gaining popularity among food processors to replace conventional thermal processing keeping nutritional quality, sensory attributes and food safety in mind. The alternative processing techniques such as ultrasound, gamma irradiation, high pressure processing and microwave treatment causes several modifications (structural changes, effects on swelling and solubility index, gelatinization behaviour, pasting or rheological properties, retrogradation and cooking time) in physicochemical and functional properties of pulse starches which offers several advantages from commercial point of view. This review aims to summarize the effect of different alternative processing techniques on the structure, solubility, gelatinization, retrogradation and pasting properties of various pulse starches. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05557-3.

13.
Food Microbiol ; 105: 104031, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35473969

RESUMEN

A new nonthermal food pasteurization approach is here presented for the first time, proposed to be called low-pressure long-time (LPLT) pasteurization or moderate pressure pasteurization (MPP) by hyperbaric inactivation (HI). To test this novel pasteurization process on raw milk, MPP by HI was carried out at three different pressure levels (150, 200 and 250 MPa), over 24 h, at naturally variable uncontrolled room temperature (≈20 °C) and compared with high pressure processing (HPP) at 600 MPa (one cycle for 90 s and a second cycle of 120 s) followed by storage under refrigeration for 21 days. Based on the results obtained, MPP at 250 MPa over 24 h caused higher microbial inactivation on total aerobic mesophiles (TAM), lactic acid bacteria (LAB) and Enterobacteriaceae (ENT) (of at least 2.2, 1.7 and 1.3 log CFU/mL, respectively) than HPP (1.1, 1.0 and 1.2 log CFU/mL, for the same microorganisms). Moreover, MPP showed a clear reduction of inoculated microorganisms to below the detection limit, in only 16 h for all pressures with reductions of at least 5.7, 5.4 and 5.5 for Listeria innocua, Salmonella senftenberg, and Escherichia coli, respectively. Additionally, during preservation under refrigeration, MPP samples (200 MPa and 250 MPa), maintained lower TAM/LAB/ENT compared to HPP, being the counts below the quantification/detection limit for at least 21 days for MPP by HI. MPP (200 MPa and 250 MPa) resulted also in counts below the detection limit for the inoculated microorganisms up to at least 21 days under refrigeration. The results of MPP by HI are very promising as a new nonthermal food pasteurization, since over 5 log reduction of vegetative bacteria were achieved, with counts maintained below the quantification/detection limit for at least 21 days under refrigeration.


Asunto(s)
Lactobacillales , Pasteurización , Animales , Microbiología de Alimentos , Leche/microbiología , Refrigeración , Temperatura
14.
Molecules ; 27(18)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36144653

RESUMEN

Honey is a value-added product rich in several types of phenolic compounds, enzymes, and sugars recently explored in biomedical and food applications. Nevertheless, even though it has a low water activity (aW ≈ 0.65) that hinders the development of pathogenic and spoilage microorganisms, it is still prone to contamination by pathogenic microorganisms (vegetative and spores) and may constitute harm to special groups, particularly by immunosuppressed people and pregnant women. Thus, an efficient processing methodology needs to be followed to ensure microbial safety while avoiding 5-hydroxymethylfurfural (HMF) formation and browning reactions, with a consequent loss of biological value. In this paper, both thermal (pressure-assisted thermal processing, PATP) and nonthermal high-pressure processing (HPP), and another pressure-based methodology (hyperbaric storage, HS) were used to ascertain their potential to inactivate Bacillus subtilis endospores in honey and to study the influence of aW on the inactivation on this endospore. The results showed that PATP at 600 MPa/15 min/75 °C of diluted honey (52.9 °Brix) with increased aW (0.85 compared to ≈0.55, the usual honey aW) allowed for inactivating of at least 4.0 log units of B. subtilis spores (to below detection limits), while HS and HPP caused neither the germination nor inactivated spores (i.e., there was neither a loss of endospore resistance after heat shock nor endospore inactivation as a consequence of the storage methodology). PATP of undiluted honey even at harsh processing conditions (600 MPa/15 min/85 °C) did not impact the spore load. The results for diluted honey open the possibility of its decontamination by spores' inactivation for medical and pharmaceutical applications.


Asunto(s)
Bacillus subtilis , Miel , Femenino , Calor , Humanos , Preparaciones Farmacéuticas , Embarazo , Esporas Bacterianas , Azúcares , Agua
15.
Molecules ; 27(21)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36364012

RESUMEN

The effect of different high-pressure processing (HPP) treatments on casein micelles was analyzed through scanning electron microscopy (SEM) and a particle size distribution analysis. Raw whole and skim milk samples were subjected to HPP treatments at 400, 500 and 600 MPa for Come-Up Times (CUT) up to 15 min at ambient temperature. Three different phenomena were observed in the casein micelles: fragmentation, alterations to shape and agglomeration. The particle size distribution analysis determined that, as pressure and time treatment increased, the three phenomena intensified. First, the size of the casein micelles began to decrease as their fragmentation occurred. Subsequently, the casein micelles lost roundness, and their shape deformed. Finally, in the most intense treatments (higher pressures and/or longer times), the micelles fragments began to agglomerate, which resulted in an increase in their average diameter. Homogenization and defatting had no significant effect on the casein micelles; however, the presence of fat in whole milk samples was bioprotective, as the effects of the three phenomena appeared faster in treated skim milk samples. Through this study, it was concluded that the size and structure of casein micelles are greatly altered during high-pressure treatment. These results provide information that broadens the understanding of the changes induced on casein micelles by high-pressure treatments at room temperature.


Asunto(s)
Caseínas , Micelas , Animales , Caseínas/química , Leche/química , Proteínas de la Leche/química
16.
Molecules ; 27(15)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35956895

RESUMEN

In this study, high pressure processing (HPP) and thermal treatment were comparatively evaluated by examining their impacts on the binding behavior and interaction between α-lactalbumin (α-La) and pelargonium-3-glucoside (P3G) under pH values of 6.0, 7.4, and 8.0. The methods of circular dichroism spectroscopy, fluorescence quenching, dynamic light scattering, and molecular simulation were used to characterize the effects of processing-induced changes in protein structure, size distribution, binding site conformation, and residue charges on their binding characteristics between them. The results indicated that the thermal treatments significantly increased the quenching constants of the complex at pH 7.4/8.0 and 60/80 °C, as well as the accessible fraction of protein at pH 8.0/80 °C. Both HPP and thermal treatments increased the random coil content and showed limited effects on the α-helix and ß-sheet contents of α-La and caused the aggregation of the complex to varying degrees. Molecular dynamic simulation and docking analyses revealed that the binding site of the complex did not change under different processing conditions, but the solvent-accessible surface area varied under different conditions.


Asunto(s)
Lactalbúmina , Pelargonium , Dicroismo Circular , Glucósidos , Concentración de Iones de Hidrógeno , Lactalbúmina/química , Espectrometría de Fluorescencia
17.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807218

RESUMEN

In this study, beef mince (approximately 4% fat longissmus costarum muscle of approximately 2-year-old Holstein cattle) was used as a material. High-pressure processing (HPP) was applied to frozen and unfrozen, vacuum-packed minced meat samples. The pH and thiobarbituric acid (TBA) values of the samples were examined during 45 days of storage. Color values (L*, a* and b*) and texture properties were examined during 30 days of storage. After freezing and HPP (350 MPa, 10 min, 10 °C), the pH value of minced meat increased (p > 0.05) and its TBA value decreased (p < 0.05). The increase in pH may be due to increased ionization during HPP. Some meat peptides, which are considered antioxidant compounds, increased the oxidative stability of meat, so a decrease in TBA may have been observed after freezing and HPP. While the color change in unpressurized samples was a maximum of 3.28 units during storage, in the pressurized sample, it exceeded the limit of 10 units on the first day of storage and exceeded the limit of 10 units on the third day of storage in the frozen and pressurized sample. Freezing and HPP caused the color of beef mince to be retained longer. The hardness, gumminess, chewability, adherence, elasticity, flexibility values of the pressurized and pressurized after freezing samples were higher than those of the unpressurized samples during storage. On the other hand, the opposite was the case for the adhesiveness values. In industrial applications, meat must be pressurized after being vacuum packed. If HPP is applied to frozen beef mince, some of its properties such as TBA, color, and texture can be preserved for a longer period of time without extreme change.


Asunto(s)
Carne , Animales , Bovinos , Color , Congelación , Concentración de Iones de Hidrógeno , Carne/análisis , Tiobarbitúricos , Vacio
18.
J Sci Food Agric ; 102(13): 6138-6145, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35478405

RESUMEN

BACKGROUND: In this study, the duration of high-pressure processing (HPP) required to achieve a 5 log reduction of Escherichia coli O157:H7 in fruit purees was evaluated. Banana, cantaloupe, and dragon fruit purees were subjected to HPP at 600 MPa for 300, 270, and 270 s, respectively, and their physicochemical properties and enzyme activities were then analysed. Diabetic mice were fed fresh and HPP-treated purees to observe their effects on the glycemic index (GI) and postprandial blood glucose response. RESULTS: Compared with their fresh counterparts, the HPP-treated banana and dragon fruit purees exhibited significantly higher viscosities, lower glucose concentrations, and higher glucose dialysis retardation indices and showed disrupted sucrose invertase and polygalacturonase activities. The GI and postprandial blood glucose response were not significantly different between the fresh and HPP-treated cantaloupe purees. By contrast, the peak time of glucose response (Tmax ) was delayed from 30 min to 60 min, and the area under the receiver operating characteristic curve was reduced by 40% in the mice fed HPP-treated banana and dragon fruit purees. The GIs of the HPP-treated banana and dragon fruit purees (were 50.3 and 44.8, respectively) were significantly lower than those of their fresh counterparts (85.1 and 75.2, respectively). CONCLUSION: HPP can change the physicochemical properties of fruit purees, resulting in stabilized blood glucose levels and lower GIs after consumption. Therefore, purees processed in this manner would benefit consumers and patients with diabetes/pre-diabetes who need to maintain stable blood glucose levels (Fig. S1). © 2022 Society of Chemical Industry.


Asunto(s)
Diabetes Mellitus Experimental , Hiperglucemia , Animales , Glucemia/análisis , Microbiología de Alimentos , Frutas/química , Índice Glucémico , Hiperglucemia/prevención & control , Ratones , Diálisis Renal
19.
Compr Rev Food Sci Food Saf ; 21(6): 4640-4682, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124402

RESUMEN

Proteins are important food ingredients that possess both functional and nutritional properties. High hydrostatic pressure (HHP) is an emerging nonthermal food processing technology that has been subject to great advancements in the last two decades. It is well established that pressure can induce changes in protein folding and oligomerization, and consequently, HHP has the potential to modify the desired protein properties. In this review article, the research progress over the last 15 years regarding the effect of HHP on protein structures, as well as the applications of HHP in modifying protein functionalities (i.e., solubility, water/oil holding capacity, emulsification, foaming and gelation) and nutritional properties (i.e., digestibility and bioactivity) are systematically discussed. Protein unfolding generally occurs during HHP treatment, which can result in increased conformational flexibility and the exposure of interior residues. Through the optimization of HHP and environmental conditions, a balance in protein hydrophobicity and hydrophilicity may be obtained, and therefore, the desired protein functionality can be improved. Moreover, after HHP treatment, there might be greater accessibility of the interior residues to digestive enzymes or the altered conformation of specific active sites, which may lead to modified nutritional properties. However, the practical applications of HHP in developing functional protein ingredients are underutilized and require more research concerning the impact of other food components or additives during HHP treatment. Furthermore, possible negative impacts on nutritional properties of proteins and other compounds must be also considered.


Asunto(s)
Manipulación de Alimentos , Tecnología de Alimentos , Presión Hidrostática , Proteínas
20.
Compr Rev Food Sci Food Saf ; 21(6): 4939-4970, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36329575

RESUMEN

The working population growth have created greater consumer demand for ready-to-eat (RTE) foods. Pasteurization is one of the most common preservation methods for commercial production of low-acid RTE cold-chain products. Proper selection of a pasteurization method plays an important role not only in ensuring microbial safety but also in maintaining food quality during storage. Better retention of flavor, color, appearance, and nutritional value of RTE products is one of the reasons for the food industry to adopt novel technologies such as high-pressure processing (HPP) as a substitute or complementary technology for thermal pasteurization. HPP has been used industrially for the pasteurization of high-acid RTE products. Yet, this method is not commonly used for pasteurization of low-acid RTE food products, due primarily to the need of additional heating to thermally inactivate spores, coupled with relatively long treatment times resulting in high processing costs. Practical Application: Food companies would like to adopt novel technologies such as HPP instead of using conventional thermal processes, yet there is a lack of information on spoilage and the shelf-life of pasteurized low-acid RTE foods (by different novel pasteurization methods including HPP) in cold storage. This article provides an overview of the microbial concerns and related regulatory guidelines for the pasteurization of low-acid RTE foods and summarizes the effects of HPP in terms of microbiology (both pathogens and spoilage microorganisms), quality, and shelf-life on low-acid RTE foods. This review also includes the most recent research articles regarding a comparison between HPP pasteurization and thermal pasteurization treatments and the limitations of HPP for low-acid chilled RTE foods.


Asunto(s)
Manipulación de Alimentos , Pasteurización , Pasteurización/métodos , Manipulación de Alimentos/métodos , Microbiología de Alimentos , Calidad de los Alimentos , Valor Nutritivo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA