Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 17(1): 115-127, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27877863

RESUMEN

Microstructural investigation of extremely strained samples, such as severely plastically deformed (SPD) materials, by using conventional transmission electron microscopy techniques is very challenging due to strong image contrast resulting from the high defect density. In this study, low angle annular dark field (LAADF) imaging mode of scanning transmission electron microscope (STEM) has been applied to study the microstructure of a Mg-3Zn-0.5Y (at%) alloy processed by high pressure torsion (HPT). LAADF imaging advantages for observation of twinning, grain fragmentation, nucleation of recrystallized grains and precipitation on second phase particles in the alloy processed by HPT are highlighted. By using STEM-LAADF imaging with a range of incident angles, various microstructural features have been imaged, such as nanoscale subgrain structure and recrystallization nucleation even from the thicker region of the highly strained matrix. It is shown that nucleation of recrystallized grains starts at a strain level of revolution [Formula: see text] (earlier than detected by conventional bright field imaging). Occurrence of recrystallization of grains by nucleating heterogeneously on quasicrystalline particles is also confirmed. Minimizing all strain effects by LAADF imaging facilitated grain size measurement of [Formula: see text] nm in fully recrystallized HPT specimen after [Formula: see text].

2.
Mater Sci Eng A Struct Mater ; 560(2-3): 224-231, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23482440

RESUMEN

Severely plastically deformed (SPD) materials, for example those produced by high pressure torsion (HPT), are reported to possess outstanding mechanical properties. A typical HPT microstructure consists of elongated grains, usually of grain size well below 1 µm, which are aligned parallel to the shear plane and showing typical shear texture components. To answer the question of how these single features of a SPD microstructure affect the mechanical properties individually, such as the yield strength, the ultimate tensile strength, the uniform elongation and the reduction in area, uniaxial tensile tests have been conducted. The samples were tested in two different orientations. Within the same testing orientation the average grain aspect ratio was also varied. The variation in grain aspect ratio within a sample was achieved through a slight back rotation of the already deformed material and selective radius-dependent specimen extraction. The main results are as follows: the ductility (in terms of the reduction in area) is influenced by the grain aspect ratio. In contrast, the ultimate tensile strength is independent of the grain aspect ratio but shows an explicit dependency on the specimen orientation.

3.
Materials (Basel) ; 16(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36770088

RESUMEN

Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion.

4.
Materials (Basel) ; 16(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36676324

RESUMEN

Superfunctional materials are defined as materials with specific properties being superior to the functions of engineering materials. Numerous studies introduced severe plastic deformation (SPD) as an effective process to improve the functional and mechanical properties of various metallic and non-metallic materials. Moreover, the concept of ultra-SPD-introducing shear strains over 1000 to reduce the thickness of sheared phases to levels comparable to atomic distances-was recently utilized to synthesize novel superfunctional materials. In this article, the application of ultra-SPD for controlling atomic diffusion and phase transformation and synthesizing new materials with superfunctional properties is discussed. The main properties achieved by ultra-SPD include: (i) high-temperature thermal stability in new immiscible age-hardenable aluminum alloys; (ii) room-temperature superplasticity for the first time in magnesium and aluminum alloys; (iii) high strength and high plasticity in nanograined intermetallics; (iv) low elastic modulus and high hardness in biocompatible binary and high-entropy alloys; (v) superconductivity and high strength in the Nb-Ti alloys; (vi) room-temperature hydrogen storage for the first time in magnesium alloys; and (vii) superior photocatalytic hydrogen production, oxygen production, and carbon dioxide conversion on high-entropy oxides and oxynitrides as a new family of photocatalysts.

5.
Materials (Basel) ; 16(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36614560

RESUMEN

The motivation for the current study was to improve the wear and frictional properties of Al, Al-Al2O3, and SiC MMCs through HPT processing. The wear test using a tungsten carbide (WC) ball was carried out for different PM and HPT-processed Al and MMC samples. The effect of the sample processing methods on the wear rate, friction, and wear surface morphology was thoroughly investigated. The high hardness after Al grain refinement and reinforcement fragmentation through the HPT processing of the samples increased the wear resistance by 16-81% over that of the PM samples. The average coefficient values and variation ranges were reduced after HPT processing. The Al and Al MMC processing methods affected the wear mechanism and surface morphologies, as proven by the microscopic observations and analyses of the worn surfaces of the samples and WC balls.

6.
Materials (Basel) ; 15(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36556632

RESUMEN

Al-Al2O3 and SiC metal matrix composites (MMCs) samples with different volume fractions up to 20% were produced by high-pressure torsion (HPT) using 10 GPa for 30 revolutions of Al-Al2O3, and SiC and powder metallurgy (PM). The effect of the processing method of micro-size Al MMCs on the density, microstructure evolution, mechanical properties, and tensile fracture mode was thoroughly investigated. HPT processing produces fully dense samples relative to those produced using powder metallurgy (PM). The HPT of the Al MMCs reduces the Al matrix grain size and fragmentation of the reinforcement particles. The Al matrix average grain size decreased to 0.39, 0.23, and 0.2 µm after the HPT processing of Al, Al-20% Al2O3, and SiC samples. Moreover, Al2O3 and SiC particle sizes decreased from 31.7 and 25.5 µm to 0.15 and 0.13 µm with a 99.5% decrease. The production of ultrafine grain (UFG) composite samples effectively improves the microhardness and tensile strength of the Al and Al MMCs by 31-88% and 10-110% over those of the PM-processed samples. The good bonding between the Al matrix and reinforcement particles noted in the HPTed Al MMCs increases the strength relative to the PM samples. The tensile fracture surface morphology results confirm the tensile properties results.

7.
Materials (Basel) ; 15(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160952

RESUMEN

The influence of the nanocrystalline structure produced by severe plastic deformation (SPD) on the corrosion behavior of CoCrFeMnNi alloys with Cr contents ranging from 0 to 20 at.% was investigated in aqueous 0.5 M H2SO4 and 3.5% NaCl solutions. The resistance to general corrosion and pitting became higher in both the solutions, with higher passivation capability observed with increasing Cr content, and it is believed that the high corrosion resistance of CoCrFeMnNi alloys can be attributed to the incorporation of the Cr element. However, the impact of the nanocrystalline structure produced by SPD on the corrosion behavior was negligibly small. This is inconsistent with reports on nanocrystalline binary Fe-Cr alloys and stainless steels processed by SPD, where grain refinement by SPD results in higher corrosion resistance. The small change in the corrosion behavior with respect to grain refinement is discussed, based on the passivation process of Fe-Cr alloys and on the influence of the core effects of HEAs on the passivation process.

8.
Materials (Basel) ; 15(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36556879

RESUMEN

The effect of high-pressure torsion (HPT) on the microstructure, phase composition, mechanical characteristics, degradation rate, and bioactive properties of the Zn-1%Mg alloy is studied. An ultrafine-grained (UFG) structure with an average grain size of α-Zn equal to 890 ± 26 nm and grains and subgrains of the Mg2Zn11 and MgZn2 phases with a size of 50-100 nm are formed after HPT. This UFG structure leads to an increase in the ultimate tensile strength of the alloy by ~3 times with an increase in elongation to 6.3 ± 3.3% due to the formation of a basal texture. The study of corrosion resistance did not show a significant effect of HPT on the degradation rate of the alloy. In addition, no significant changes in the bioactivity of the alloy after HPT: hemolysis, cellular colonization and Escherichia coli growth inhibition.

9.
Materials (Basel) ; 15(12)2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35744252

RESUMEN

An overview of modern material science problems is presented for ultralightweight high-modulus commercial Al-Li-based alloys in historical retrospect. Numerous particular examples of the Soviet and Russian aviation whose various designs were made of these alloys confirm their successful innovative potential. The key regularities of multicomponent alloying are discussed for the master alloys and modern commercial Al-Li-based alloys of the latest generation; the features typical of their microstructures, phase composition, and properties formed during aging are analyzed. The main mechanisms of phase formation are generalized for standard thermal and thermomechanical treatments. Recent original achievements have been obtained in designing of unique structural and phase transformations in these commercial alloys by means of methods of severe plastic deformations followed by heat treatment and storage. Using the example of three Russian commercial alloys of last generation, the basic principles of creating and controlling an ultrafine-grained structure, the origin and growth of stable nanophases of various types and chemical composition that determine the physicomechanical properties of alloys are established.

10.
Materials (Basel) ; 14(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34442917

RESUMEN

Using the methods of electron microscopy and X-ray analysis in combination with measurements of the electrical resistance and magnetic susceptibility, the authors have obtained data on the peculiar features of pre-martensitic states and martensitic transformations, as well as subsequent decomposition, in the alloys with shape memory effect of Cu-14wt%Al-3wt%Ni and Cu-13.5wt%Al-3.5wt%Ni. For the first time, we established the microstructure, phase composition, mechanical properties, and microhardness of the alloys obtained in the nanocrystalline state as a result of severe plastic deformation under high pressure torsion and subsequent annealing. A crystallographic model of the martensite nucleation and the rearrangements ß1→ß1' and ß1→γ1' are proposed based on the analysis of the observed tweed contrast and diffuse scattering in the austenite and the internal defects in the substructure of the martensite.

11.
Data Brief ; 25: 104160, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31440538

RESUMEN

The dataset presented here shows the microstructure and mechanical properties of secondary (recycled) cast aluminum-silicon (Al-Si) piston alloys processed through severe plastic deformation technique, known as high-pressure torsion (HPT). The HPT processing was undertaken for 1/4, 1/2, 1 and 10 turns of the lower anvil (rotating at constant speed of 1rpm) while the upper anvil maintained at a normal pressure of 3.0 GPa. The data on microstructural evolution obtained at the central region and edge of the circular (disk) HPT sample were obtained using optical and scanning electron microscopy and these data are presented here. The data on the analysis of the particle shape, sizes and distribution from the micrographs using ImageJ software are also presented. Data on mechanical properties characterized using Vickers microhardness measurement across the surface of HPT sample are also shown. Pictures depicting the microhardness measurement scheme, high-pressure torsion facility and sample nomenclature are presented.

12.
Materials (Basel) ; 12(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382378

RESUMEN

In this study, two biodegradable Mg-Zn-Ca alloys with alloy content of less than 1 wt % were strengthened via high pressure torsion (HPT). A subsequent heat treatment at temperatures of around 0.45 Tm led to an additional, sometimes even larger increase in both hardness and tensile strength. A hardness of more than 110 HV and tensile strength of more than 300 MPa were achieved in Mg-0.2Zn-0.5Ca by this procedure. Microstructural analyses were conducted by scanning and transmission electron microscopy (SEM and TEM, respectively) and atom probe tomography (APT) to reveal the origin of this strength increase. They indicated a grain size in the sub-micron range, Ca-rich precipitates, and segregation of the alloying elements at the grain boundaries after HPT-processing. While the grain size and segregation remained mostly unchanged during the heat treatment, the size and density of the precipitates increased slightly. However, estimates with an Orowan-type equation showed that precipitation hardening cannot account for the strength increase observed. Instead, the high concentration of vacancies after HPT-processing is thought to lead to the formation of vacancy agglomerates and dislocation loops in the basal plane, where they represent particularly strong obstacles to dislocation movement, thus, accounting for the considerable strength increase observed. This idea is substantiated by theoretical considerations and quenching experiments, which also show an increase in hardness when the same heat treatment is applied.

13.
Materials (Basel) ; 11(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011826

RESUMEN

Aluminium-tin-based alloys with different compositions were synthesized by a high-pressure torsion (HPT) method. The effect of different alloying elements and processing routes on the hydrogen generation performance of the alloys was investigated. The results show that Zn can enhance the hydrogen generation rate and yield by promoting pitting corrosion. The highest reactivity in water was achieved for an Al-30wt %Sn-10wt %Zn alloy. Detailed analysis of the Al-30wt %Sn-10wt %Zn alloy shows that increasing the shear strain and the resultant formation of ultrafine grains and phase mixing enhance the hydrogen generation rate through the effects of both nanogalvanic cells and pitting corrosion.

14.
Materials (Basel) ; 9(8)2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-28773808

RESUMEN

The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt%) Ti and 25 vol% (11.4 wt%) Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA