RESUMEN
Cholesterol reduction by intracellular protozoan parasite Leishmania donovani (L. donovani), causative agent of leishmaniasis, impairs antigen presentation, pro-inflammatory cytokine secretion and host-protective membrane-receptor signaling in macrophages. Here, we studied the miRNA mediated regulation of cholesterol biosynthetic genes to understand the possible mechanism of L. donovani-induced cholesterol reduction and therapeutic importance of miRNAs in leishmaniasis. System-scale genome-wide microtranscriptome screening was performed to identify the miRNAs involved in the regulation of expression of key cholesterol biosynthesis regulatory genes through miRanda3.0. 11 miRNAs out of 2823, showing complementarity with cholesterol biosynthetic genes were finally selected for expression analysis. These selected miRNAs were differentially regulated in THP-1 derived macrophages and in primary human macrophages by L. donovani. Correlation of expression and target validation through luciferase assay suggested two key miRNAs, hsa-miR-1303 and hsa-miR-874-3p regulating the key genes hmgcr and hmgcs1 respectively. Inhibition of hsa-mir-1303 and hsa-miR-874-3p augmented the expression of targets and reduced the parasitemia in macrophages. This study will also provide the platform for the development of miRNA-based therapy against leishmaniasis.
RESUMEN
BACKGROUND: The level of the regulator of G-protein signaling 4-1 (RGS4-1) isoform, the longest RGS4 isoform, is significantly reduced in the dorsolateral prefrontal cortex (DLPFC) of people with schizophrenia. However, the mechanism behind this has not been clarified. The 3'untranslated regions (3'UTRs) are known to regulate the levels of their mRNA splice variants. METHODS: We constructed recombinant pmir-GLO vectors with a truncated 3' regulatory region of the RGS4 gene (3R1, 3R2, 3R3, 3R4, 3R5, and 3R6). The dual-luciferase reporter assay was conducted to find functional regions in HEK-293, SK-N-SH, and U87cells and then predicted miRNA binding to these regions. We performed a dual-luciferase reporter assay and a Western blot analysis after transiently transfecting the predicted miRNAs. RESULTS: The dual-luciferase reporter assay found that regions +401-+789, +789-+1152, and +1562-+1990 (with the last base of the termination codon being +1) might be functional regions. Hsa-miR-874-3p, associated with many psychiatric disorders, might target the +789-+1152 region in the 3'UTR of the RGS4 gene. In the dual-luciferase reporter assay, the hsa-miR-874-3p mimic, co-transfected with 3R1, down-regulated the relative fluorescence intensities. However, this was reversed when the hsa-miR-874-3p mimic was co-transfected with m3R1 (deletion of +853-+859). The hsa-miR-874-3p mimic significantly decreased the endogenous expression of the RGS4-1 isoform in HEK-293 cells. CONCLUSIONS: Hsa-miR-874-3p inhibits the expression of the RGS4-1 isoform by targeting +853-+859.
Asunto(s)
Regiones no Traducidas 3' , MicroARNs , Isoformas de Proteínas , Proteínas RGS , Humanos , Proteínas RGS/genética , Proteínas RGS/metabolismo , MicroARNs/genética , Células HEK293 , Isoformas de Proteínas/genética , Regiones no Traducidas 3'/genética , Esquizofrenia/genética , Esquizofrenia/metabolismo , Corteza Prefrontal/metabolismo , Línea Celular TumoralRESUMEN
BACKROUND: Depression is a significant concern in clinical and preclinical psychoneurobiological sciences due to its high prevalence and its individual and collective consequences. Identifying efficient biomarkers for accurate diagnosis is crucial, with ideal biomarkers having detectable serum levels and conformational and thermal stability. This study aims to identify stable plasma biomarkers for the diagnosis and prognosis of major depressive disorder, as the pathogenesis of the disorder remains incompletely understood, affecting diagnosis accuracy. METHODS: Thus, this study included ten MDD patients and eight healthy controls. The present work analyzed miRNAs in patients with major depressive disorder compared to healthy controls. RESULTS: Eleven specific miRNAs, particularly hsa-miR-874-3p; hsa-let-7d-5p; and hsa-miR-93-3p showed upregulation-type plasma variations in the group of patients with major depressive disorder. miRNA functionality is linked to depressive pathophysiology. CONCLUSIONS: This study identifies a "bouquet" of miRNAs with significant upregulation variations in patients with major depressive disorder, suggesting further research to determine their suitability for personalization and evaluation, ultimately becoming integral components of major depression serological evaluations.