RESUMEN
Human and murine neutrophils differ with respect to representation in blood, receptors, nuclear morphology, signaling pathways, granule proteins, NADPH oxidase regulation, magnitude of oxidant and hypochlorous acid production, and their repertoire of secreted molecules. These differences often matter and can undermine extrapolations from murine studies to clinical care, as illustrated by several failed therapeutic interventions based on mouse models. Likewise, coevolution of host and pathogen undercuts fidelity of murine models of neutrophil-predominant human infections. However, murine systems that accurately model the human condition can yield insights into human biology difficult to obtain otherwise. The challenge for investigators who employ murine systems is to distinguish models from pretenders and to know when the mouse provides biologically accurate insights. Testing with human neutrophils observations made in murine systems would provide a safeguard but is not always possible. At a minimum, studies that use exclusively murine neutrophils should have accurate titles supported by data and restrict conclusions to murine neutrophils and not encompass all neutrophils. For now, the integration of evidence from studies of neutrophil biology performed using valid murine models coupled with testing in vitro of human neutrophils combines the best of both approaches to elucidate the mysteries of human neutrophil biology.
Asunto(s)
NADPH Oxidasas , Neutrófilos , Humanos , Ratones , Animales , NADPH Oxidasas/metabolismo , Transducción de SeñalRESUMEN
Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.
Asunto(s)
Antiinfecciosos , Gonorrea , Vacunas , Recién Nacido , Humanos , Neisseria gonorrhoeae , Gonorrea/tratamiento farmacológico , Gonorrea/epidemiología , Gonorrea/prevención & controlRESUMEN
Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.
Asunto(s)
Vacunas contra la Tuberculosis , Tuberculosis , Humanos , Tuberculosis/prevención & control , Tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Desarrollo de Vacunas , Vacuna BCG/inmunología , Vacuna BCG/administración & dosificación , Mycobacterium tuberculosis/inmunología , AnimalesRESUMEN
BACKGROUND: Bats are recognized as the natural reservoir of several zoonotic viruses that pose a threat to public health worldwide. In our recent reports we describe the identification of a novel poxvirus, IsrRAPXV, in Egyptian fruit bats. This poxvirus is associated with high morbidity and mortality in bats. METHODS: Herein, we describe the identification of poxvirus in a female patient hospitalized with systemic symptoms and severe painful skin lesions on her hands. We performed qPCR, whole genome sequencing and phylogenetic analysis to identify and characterize this poxvirus as the etiologic agent. RESULTS: The patient interacted with wounded and sick bats as a volunteer in a bat shelter run by the Israel bat sanctuary organization. Samples collected from the patient's skin lesions were positive for the presence of IsrRAPXV by PCR. Additionally, phylogenetic analysis showed that this virus is identical to IsrRAPXV originally described by us as the causative agent of skin lesions in fruit bats. CONCLUSIONS: Our finding suggest that IsrRAPXV is zoonotic and therefore veterinarians and volunteers working in bats shelter should meticulously follow the guidelines of working with bats and use required personal protective equipment.
RESUMEN
Haemophilus ducreyi causes the genital ulcer disease chancroid and painful cutaneous ulcers in children who live in the tropics. To acquire heme from the host, H. ducreyi expresses a TonB-dependent hemoglobin receptor, HgbA, which is necessary and sufficient for H. ducreyi to progress to the pustular stage of disease in a controlled human infection model. HgbA transports hemoglobin across the outer membrane; how heme is transported across the cytoplasmic membrane is unclear. In previous studies, transcripts encoding the YfeABCD heme transporter were upregulated in experimental lesions caused by H. ducreyi in human volunteers, suggesting the latter may have a role in virulence. Here we constructed a double deletion mutant, 35000HPΔyfeABΔyfeCD, which exhibited growth defects relative to its parent 35000HP in media containing human hemoglobin as an iron source. Five human volunteers were inoculated at three sites on the skin overlying the deltoid with each strain. The results of the trial showed that papules formed at 100% (95% CI, 71.5, 100) at both 35000HP and 35000HPΔyfeABΔyfeCD-inoculated sites (P = 1.0). Pustules formed at 60% (95% CI, 25.9, 94.1) at parent-inoculated sites and 53% (95% CI, 18.3, 88.4) at mutant-inoculated sites (P = 0.79). Thus, the ABC transporter encoded by yfeAB and yfeCD was dispensable for H. ducreyi virulence in humans. In the absence of YfeABCD, H. ducreyi likely utilizes other periplasmic binding proteins and ABC-transporters such as HbpA, SapABCDF, and DppBCDF to shuttle heme from the periplasm into the cytoplasm, underscoring the importance of redundancy of such systems in gram-negative pathogens.
Asunto(s)
Proteínas Bacterianas , Chancroide , Haemophilus ducreyi , Hierro , Haemophilus ducreyi/genética , Haemophilus ducreyi/patogenicidad , Haemophilus ducreyi/metabolismo , Humanos , Chancroide/microbiología , Chancroide/patología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Virulencia , Hierro/metabolismo , Masculino , Adulto , Hemo/metabolismoRESUMEN
Here, we report on a case of human infection with the H3N8 avian influenza virus. The patient had multiple myeloma and died of severe infection. Genome analysis showed multiple gene mutations and reassortments without mammalian-adaptive mutations. This suggests that avian influenza (A/H3N8) virus infection could be lethal for immunocompromised persons.
Asunto(s)
Subtipo H3N8 del Virus de la Influenza A , Gripe Humana , Humanos , China , Subtipo H3N8 del Virus de la Influenza A/genéticaRESUMEN
Analysis of clinical and environmental Vibrio cholerae O1 strains obtained during 2008-2015 in Nigeria showed that lineages Afr9 and Afr12 carrying cholera toxin and Vibrio pathogenicity island 1 can be isolated from water. Our findings raise concerns about the role of the environment in maintenance and emergence of cholera outbreaks in Nigeria.
Asunto(s)
Toxina del Cólera , Cólera , Islas Genómicas , Nigeria/epidemiología , Toxina del Cólera/genética , Cólera/epidemiología , Cólera/microbiología , Humanos , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Vibrio cholerae/clasificación , Brotes de Enfermedades , Vibrio cholerae O1/genética , Vibrio cholerae O1/clasificación , Vibrio cholerae O1/aislamiento & purificación , Vibrio cholerae O1/patogenicidad , Historia del Siglo XXI , Microbiología AmbientalRESUMEN
Vibrio mimicus bacteria have caused sporadic cases and outbreaks of cholera-like diarrhea throughout the world, but the association of lineages with such events is unexplored. Genomic analyses revealed V. mimicus lineages carrying the virulence factors cholera toxin and toxin coregulated pilus, one of which has persisted for decades in China and the United States.
Asunto(s)
Toxina del Cólera , Islas Genómicas , Vibrio mimicus , China/epidemiología , Humanos , Vibrio mimicus/genética , Vibrio mimicus/patogenicidad , Estados Unidos/epidemiología , Toxina del Cólera/genética , Cólera/microbiología , Cólera/epidemiología , Filogenia , Vibriosis/microbiología , Vibriosis/epidemiología , Factores de Virulencia/genéticaRESUMEN
Salmonella enterica serovar Abortusovis is a ovine-adapted pathogen that causes spontaneous abortion. Salmonella Abortusovis was reported in poultry in 2009 and has since been reported in human infections in New South Wales, Australia. Phylogenomic analysis revealed a clade of 51 closely related isolates from Australia originating in 2004. That clade was genetically distinct from ovine-associated isolates. The clade was widespread in New South Wales poultry production facilities but was only responsible for sporadic human infections. Some known virulence factors associated with human infections were only found in the poultry-associated clade, some of which were acquired through prophages and plasmids. Furthermore, the ovine-associated clade showed signs of genome decay, but the poultry-associated clade did not. Those genomic changes most likely led to differences in host range and disease type. Surveillance using the newly identified genetic markers will be vital for tracking Salmonella Abortusovis transmission in animals and to humans and preventing future outbreaks.
Asunto(s)
Salmonella enterica , Salmonella , Embarazo , Femenino , Humanos , Animales , Ovinos , Aves de Corral , Serogrupo , Nueva Gales del Sur/epidemiología , Australia/epidemiologíaRESUMEN
Controlled Human Infectious Model studies (CHIM) involve deliberately exposing volunteers to pathogens. To discuss ethical issues related to CHIM, the European Vaccine Initiative and the International Alliance for Biological Standardization organised the workshop "Ethical Approval for CHIM Clinical Trial Protocols", which took place on May 30-31, 2023, in Brussels, Belgium. The event allowed CHIM researchers, regulators, ethics committee (EC) members, and ethicists to examine the ethical criteria for CHIM and the role(s) of CHIM in pharmaceutical development. The discussions led to several recommendations, including continued assurance that routine ethical requirements are met, assurance that participants are well-informed, and that preparation of study documents must be both ethically and scientifically sound from an early stage. Study applications must clearly state the rationale for the challenge compared to alternative study designs. ECs need to have clear guidance and procedures for evaluating social value and assessing third-party risks. Among other things, public trust in research requires minimisation of harm to healthy volunteers and third-party risk. Other important considerations include appropriate stakeholder engagement, public education, and access to health care for participants after the study.
Asunto(s)
Desarrollo de Medicamentos , Proyectos de Investigación , Humanos , Voluntarios SanosRESUMEN
Earlier meetings laid the foundations for Controlled Human Infection Models (CHIMs), also known as human challenge studies and human infection studies, including Good Manufacturing Practice (GMP) production of the challenge agent, CHIM ethics, environmental safety in CHIM, recruitment, community engagement, advertising and incentives, pre-existing immunity, and clinical, immunological, and microbiological endpoints. The fourth CHIM meeting focused on CHIM studies being conducted in endemic countries. Over the last ten years we have seen a vast expansion of the number of countries in Africa performing CHIM studies, as well as a growing number of different challenge organisms being used. Community and public engagement with assiduous ethical and regulatory oversight has been central to successful introductions and should be continued, in more community-led or community-driven models. Valuable initiatives for regulation of CHIMs have been undertaken but further capacity building remains essential.
RESUMEN
The increasing recent interest in human challenge studies or controlled human infection model studies for accelerating vaccine development has been driven by the recognition of the unique ability of these studies to contribute to the understanding of response to infection and the performance of vaccines. With streamlining of ethical processes, conduct and supervision and the availability of new investigative tools from immunophenotyping to glycobiology, the potential to derive valuable data to inform vaccine testing and development has never been greater. However, issues of availability and standardization of challenge strains, conduct of studies in disease endemic locations and the iteration between clinical and laboratory studies still need to be addressed to gain maximal value for vaccine development.
Asunto(s)
Infecciones/inmunología , Vacunas/inmunología , Ensayos Clínicos como Asunto , Humanos , Investigación , VacunaciónRESUMEN
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Asunto(s)
Modelos Biológicos , Desarrollo de Vacunas , Ensayos Clínicos Fase III como Asunto , Control de Enfermedades Transmisibles , Humanos , VacunasRESUMEN
BACKGROUND: A controlled human infection model for assessing tuberculosis (TB) immunity can accelerate new vaccine development. METHODS: In this phase 1 dose escalation trial, 92 healthy adults received a single intradermal injection of 2 × 106 to 16 × 106 colony-forming units of Bacillus Calmette-Guérin (BCG). The primary endpoints were safety and BCG shedding as measured by quantitative polymerase chain reaction, colony-forming unit plating, and MGIT BACTEC culture. RESULTS: Doses up to 8 × 106 were safe, and there was evidence for increased BCG shedding with dose escalation. The MGIT time-to-positivity assay was the most consistent and precise measure of shedding. Power analyses indicated that 10% differences in MGIT time to positivity (area under the curve) could be detected in small cohorts (n = 30). Potential biomarkers of mycobacterial immunity were identified that correlated with shedding. Transcriptomic analysis uncovered dose- and time-dependent effects of BCG challenge and identified a putative transcriptional TB protective signature. Furthermore, we identified immunologic and transcriptomal differences that could represent an immune component underlying the observed higher rate of TB disease incidence in males. CONCLUSIONS: The safety, reactogenicity, and immunogenicity profiles indicate that this BCG human challenge model is feasible for assessing in vivo TB immunity and could facilitate the vaccine development process. CLINICAL TRIALS REGISTRATION: NCT01868464 (ClinicalTrials.gov).
RESUMEN
Global elimination of hepatitis C virus (HCV) will be difficult to attain without an effective HCV vaccine. Controlled human infection (CHI) studies with HCV were not considered until recently, when highly effective treatment became available. However, now that successful treatment of a deliberate HCV infection is feasible, it is imperative to evaluate the ethics of establishing a program of HCV CHI research. Here, we evaluate the ethics of studies to develop an HCV CHI model in light of 10 ethical considerations: sufficient social value, reasonable risk-benefit profile, suitable site selection, fair participant selection, robust informed consent, proportionate compensation or payment, context-specific stakeholder engagement, fair and open collaboration, independent review and oversight, and integrated ethics research. We conclude that it can be ethically acceptable to develop an HCV CHI model. Indeed, when done appropriately, developing a model should be a priority on the path toward global elimination of HCV.
Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepatitis C/epidemiología , Hepatitis C/prevención & control , Hepatitis C/tratamiento farmacológico , Consentimiento Informado , Antivirales/uso terapéuticoRESUMEN
Ethical human subjects research requires participants to be treated safely and respectfully, yet much bioethical debate takes place without participants. We aim to address this gap in the context of controlled human infection model (CHIM) research. Based upon our own experience as study participants, and bolstered by a survey of 117 potential hepatitis C virus CHIM participants, we present ideas to inform efficient, ethical, and scientifically useful study design. We advocate for full protocol transparency, higher compensation, commitment to the rapid dissemination of study results, and proactive efforts to detail risk-minimization efforts as early as possible in the recruitment process, among other measures. We encourage researchers to proactively partner with volunteer advocacy organizations that promote collective representation of volunteers to maximize their agency, and guard against ethical issues arising from healthy human subjects research.
Asunto(s)
Hepacivirus , Voluntarios , Humanos , Proyectos de InvestigaciónRESUMEN
Controlled human infection model trials for hepatitis C virus represent an important opportunity to identify correlates of protective immunity against a well-characterized inoculum of hepatitis C virus and how such responses are modified by vaccination. In this article, we discuss the approach to immunological monitoring during such trials, including a set of recommendations for optimal sampling schedule and preferred immunological assays to examine the different arms of the immune response. We recommend that this approach be adapted to different trial designs. Finally, we discuss how these studies can provide surrogate predictors of the success of candidate vaccines.
Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Monitorización Inmunológica , VacunaciónRESUMEN
The design of a clinical trial for a controlled human infection model (CHIM) to accelerate hepatitis C virus (HCV) vaccine development requires careful consideration. The design of a potential approach to HCV CHIM is outlined, involving initial sentinel cohorts to establish the safety and curability of the viral inoculum followed by larger cohorts to establish the spontaneous clearance rate for each inoculum. The primary endpoint would be HCV clearance by 24 weeks post-inoculation, recognizing that the prevention of chronic infection would be the primary goal of HCV vaccine candidates. Additional considerations are discussed, including the populations to be enrolled, the required monitoring approach, indications for antiviral therapy, and the required sample size for different CHIM approaches. Finally, safety considerations for CHIM participants are discussed.
Asunto(s)
Hepatitis C Crónica , Hepatitis C , Vacunas , Humanos , Hepacivirus , Tamaño de la Muestra , Hepatitis C/prevención & control , Hepatitis C/tratamiento farmacológico , Hepatitis C Crónica/prevención & control , Hepatitis C Crónica/tratamiento farmacológico , Antivirales/uso terapéuticoRESUMEN
BACKGROUND: Few studies have assessed participant safety in human challenge trials (HCTs). Key questions regarding HCTs include how risky such trials have been, how often adverse events (AEs) and serious adverse events (SAEs) occur, and whether risk mitigation measures have been effective. METHODS: A systematic search of PubMed and PubMed Central for articles reporting on results of HCTs published between 1980 and 2021 was performed and completed by 7 October 2021. RESULTS: Of 2838 articles screened, 276 were reviewed in full. A total of 15 046 challenged participants were described in 308 studies that met inclusion criteria; 286 (92.9%) of these studies reported mitigation measures used to minimize risk to the challenge population. Among 187 studies that reported on SAEs, 0.2% of participants experienced at least 1 challenge-related SAE. Among 94 studies that graded AEs by severity, challenge-related AEs graded "severe" were reported by between 5.6% and 15.8% of participants. AE data were provided as a range to account for unclear reporting. Eighty percent of studies published after 2010 were registered in a trials database. CONCLUSIONS: HCTs are increasingly common and used for an expanding list of diseases. Although AEs occur, severe AEs and SAEs are rare. Reporting has improved over time, though not all papers provide a comprehensive report of relevant health impacts. We found very few severe symptoms or SAEs in studies that reported them, but many HCTs did not report relevant safety data. This study was preregistered on PROSPERO as CRD42021247218.
RESUMEN
The newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2.75 and BA.2.76 subvariants contained 35 and 29 additional mutations in its spike (S) protein compared with the reference SARS-CoV-2 genome, respectively. Here, we measured the evasion degree of the BA.1, BA.2, BA.4, BA.5, BA.2.75, and BA.2.76 subvariants from neutralizing immunity in people previously infected with the Omicron BA.1 and BA.2, determined the effect of vaccination on immune evasion, and compared the titers of neutralizing antibodies in serums between acute infection and convalescence. Results showed that the neutralization effect of serums from patients with different vaccination statuses and BA.1/BA.2 breakthrough infection decreased with the Omicron evolution from BA.1 to BA.2, BA.4, BA.5, BA.2.75, and BA.2.76. This study also indicated that the existing vaccines could no longer provide effective protection, especially for the emerging BA.2.75 and BA.2.76 subvariants. Therefore, vaccines against emerging epidemic strains should be designed specifically. In the future, we can not only focus on the current strains, but also predict and design new vaccines against potential mutant strains. At the same time, we can combine the virus strains' infection characteristics to develop protective measures for virus colonization areas, such as nasal protection spray. Besides, further studies on the Y248N mutation of BA.2.76 subvariant were also necessary to explore its contribution to the enhanced immune evasion ability.