Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 566: 24-29, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34111668

RESUMEN

Ferroptosis was recently defined as a novel type of programmed cell death depending on iron and lipid peroxidation. It is biologically different from other types of cell death such as apoptosis. While the involvement of ferroptosis in cancer, patient and animal model have been intensely studied, ferroptosis in human motor neuron model is still clearly unknown. Here we carefully assessed ferroptosis using human iPS cell-derived motor neuron (hiMNs). We found that almost all hiMNs died by the treatment of glutathione peroxidase 4 (GPX4) inhibitors. Importantly, the cell death was rescued by one antioxidant, vitamin E acetate, iron chelators and lipid peroxidase inhibitors with high dynamic ranges. Finally, these data clearly indicated that ferroptosis constitutively occurs in hiMNs, suggesting the possibility that it might play a biologically and pathologically important roles in motor neuron death such as motor neuron disease (MND)/Amyotrophic lateral sclerosis (ALS).


Asunto(s)
Muerte Celular , Ferroptosis , Neuronas Motoras/citología , Antioxidantes/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular , Inhibidores Enzimáticos/farmacología , Ferroptosis/efectos de los fármacos , Humanos , Neuronas Motoras/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores
2.
Sci Total Environ ; 948: 174772, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39019263

RESUMEN

Mounting evidence in animal experiments proves that early life stage exposure to organophosphate flame retardants (OPFRs) affects the locomotor behavior and changes the transcriptions of central nervous system genes. Unfortunately, their effect on human motor neuron (MN) development, which is necessary for body locomotion and survival, has not yet characterized. Here, we utilized a spinal cord MN differentiation model from human embryonic stem cells (ESCs) and adopted this model to test the effects of two typical OPFRs tris (2-butoxyethyl) phosphate (TBEP) and tris (2-chloroethyl) phosphate (TCEP), on MN development and the possible mechanisms underlying. Our findings revealed TBEP exerted a much more inhibitory effect on MN survival, while TCEP exhibited a stronger stimulatory effect on ESCs differentiation into MN, and thus TBEP exhibited a stronger inhibition on MN development than TCEP. RNA sequencing analysis identified TBEP and TCEP inhibited MN survival mainly by disrupting extracellular matrix (ECM)-receptor interaction. Focusing on the pathway guided MN differentiation, we found both TBEP and TCEP activated BMP signaling, whereas TCEP simultaneously downregulated Wnt signaling. Collectively, this is the first study demonstrated TBEP and TCEP disrupted human MN development by affecting their survival and differentiation, thereby raising concern about their potential harm in causing MN disorders.


Asunto(s)
Diferenciación Celular , Retardadores de Llama , Neuronas Motoras , Organofosfatos , Retardadores de Llama/toxicidad , Humanos , Diferenciación Celular/efectos de los fármacos , Organofosfatos/toxicidad , Neuronas Motoras/efectos de los fármacos , Compuestos Organofosforados/toxicidad , Supervivencia Celular/efectos de los fármacos
3.
Front Cell Neurosci ; 11: 284, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959189

RESUMEN

Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC)-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable analysis up to 10 days in vitro. Finally, we demonstrate that zebrafish OPCs differentiate into Myelin Basic Protein (MBP)-expressing OLs when co-cultured with human motor neurons differentiated from induced pluripotent stem cells (iPSCs). This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatments to human diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA