Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(45): e2308035120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37883417

RESUMEN

Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.

2.
Proc Natl Acad Sci U S A ; 119(13): e2119883119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312369

RESUMEN

SignificanceWe present a groundbreaking advance in completely nonprecious hydrogen fuel cell technologies achieving a record power density of 200 mW/cm2 with Ni@CNx anode and Co-Mn cathode. The 2-nm CNx coating weakens the O-binding energy, which effectively mitigates the undesirable surface oxidation during hydrogen oxidation reaction (HOR) polarization, leading to a stable fuel cell operation for Ni@CNx over 100 h at 200 mA/cm2, superior to a Ni nanoparticle counterpart. Ni@CNx exhibited a dramatically enhanced tolerance to CO relative to Pt/C, enabling the use of hydrogen gas with trace amounts of CO, critical for practical applications. The complete removal of precious metals in fuel cells lowers the catalyst cost to virtually negligible levels and marks a milestone for practical alkaline fuel cells.

3.
Nano Lett ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619280

RESUMEN

Developing highly active yet stable catalysts for the hydrogen oxidation reaction (HOR) in alkaline media remains a significant challenge. Herein, we designed a novel catalyst of atomic PtPd-layer shelled ultrasmall PdCu hollow nanoparticles (HPdCu NPs) on partially unzipped carbon nanotubes (PtPd@HPdCu/W-CNTs), which can achieve a high mass activity, 5 times that of the benchmark Pt/C, and show exceptional stability with negligible decay after 20,000 cycles of accelerated degradation test. The atomically thin PtPd shell serves as the primary active site for the HOR and a protective layer that prevents Cu leaching. Additionally, the HPdCu substrate not only tunes the adsorption properties of the PtPd layer but also prevents corrosive Pt from reaching the interface between NPs and the carbon support, thereby mitigating carbon corrosion. This work introduces a new strategy that leverages the distinct advantages of multiple components to address the challenges associated with slow kinetics and poor durability toward the HOR.

4.
Small ; 20(17): e2307780, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38168535

RESUMEN

The development of high-performance, stable and platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline media is crucial for the commercial application of anion exchange membrane fuel cells (AEMFCs). Ruthenium, as an emerging HOR electrocatalyst with a price advantage over platinum, still needs to solve the problems of low intrinsic activity and easy oxidation. Herein, Ru nanoparticles are anchored on the oxygen-vacancy-rich metalloid WO2.9 by interfacial engineering to create abundant and efficient Ru and WO2.9 interfacial active sites for accelerated HOR in alkaline media. Ru/WO2.9/C displays excellent catalytic activity with mass activity (8.29 A mgNM -1) and specific activity (1.32 mA cmNM -2), which are 2.5/3.3 and 21.8/8.3 times that of PtRu/C and Pt/C, respectively. Moreover, Ru/WO2.9/C exhibits excellent CO tolerance and operational stability. Experimental and theoretical studies reveal that the improved charge transfer from Ru to WO2.9 in the metal/metalloid heterostructure significantly tune the electronic structure of Ru sites and optimize the hydrogen binding energy (HBE) of Ru. While, WO2.9 provides abundant hydroxyl adsorption sites. Therefore, the equilibrium adsorption of hydrogen and hydroxyl at the interface of Ru/WO2.9 will be realized, and the oxidation of metal Ru would be avoided, thereby achieving excellent HOR activity and durability.

5.
Small ; 20(15): e2308053, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009478

RESUMEN

The urgent development of effective electrocatalysts for hydrogen evolution and hydrogen oxidation reaction (HER/HOR) is needed due to the sluggish alkaline hydrogen electrocatalysis. Here, an unusual face-centered cubic (fcc) Ru nanocrystal with favorable HER/HOR performance is offered. Guided by the lower calculated surface energy of fcc Ru than that of hcp Ru in NH3, the carbon-supported fcc Ru electrocatalyst is facilely synthesized in the NH3 reducing atmosphere. The specific HOR kinetic current density of fcc Ru can reach 23.4 mA cmPGM -2, which is around 20 and 21 times greater than that of hexagonal close-packed (hcp) Ru and Pt/C, respectively. Additionally, the HER specific activity is enhanced more than six times in fcc Ru electrocatalyst when compared to Pt/C. Experimental and theoretical analysis indicate that the phase transition from hcp Ru to fcc Ru can negatively shift the d band center, weaken the interaction between catalysts and key intermediates and therefore enhances the HER/HOR kinetics.

6.
Small ; 20(29): e2311631, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38513241

RESUMEN

Nanoparticles composed of high-entropy alloys (HEA NPs) exhibit remarkable performance in electrocatalytic processes such as hydrogen evolution and oxidations. In this study, two types of quinary HEA NPs of PtRhPdIrRu, are synthesized, featuring disordered and crystallized nanostructures, both with and without a boiling mixture. The disordered HEA NPs (d-HEA NPs) with a size of 3.5 nm is synthesized under intense boiling conditions, attributed to improved heat and mass transfer during reduction of precursors and particle growth. The disordered HEA NPs displayed an exceptionally high turnover frequency of 33.1 s-1 at an overpotential of 50 mV, surpassing commercial Pt NPs in acidic electrolytes by 5.4 times. Additionally, d-HEA NPs exhibited superior stability at a constant electrolyzing current of 50 mA cm-2 compared to commercial Pt NPs. When employed as the anodic catalyst in an H2-O2 fuel cell, d-HEA NPs demonstrated a remarkable high current power density of 15.3 kW per gram of noble metal. Consequently, these findings highlight the potential of d-HEA NPs in electrochemical applications involving hydrogen.

7.
Small ; : e2401404, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644200

RESUMEN

Developing low-loading platinum-group-metal (PGM) catalysts is one of the key challenges in commercializing anion-exchange-membrane-fuel-cells (AEMFCs), especially for hydrogen oxidation reaction (HOR). Here, ruthenium-iridium nanoparticles being deposited on a Zn-N species-doped carbon carrier (Ru6Ir/Zn-N-C) are synthesized and used as an anodic catalyst for AEMFCs. Ru6Ir/Zn-N-C shows extremely high mass activity (5.87 A mgPGM -1) and exchange current density (0.92 mA cm-2), which is 15.1 and 3.9 times that of commercial Pt/C, respectively. Based on the Ru6Ir/Zn-N-C AEMFCs achieve a peak power density of 1.50 W cm-2, surpassing the state-of-the-art commercial PtRu catalysts and the power ratio of the normalized loading is 14.01 W mgPGM anode -1 or 5.89 W mgPGM -1 after decreasing the anode loading (87.49 µg cm-2) or the total PGM loading (0.111 mg cm-2), satisfying the US Department of Energy's PGM loading target. Moreover, the solvent and solute isotope separation method is used for the first time to reveal the kinetic process of HOR, which shows the reaction is influenced by the adsorption of H2O and OH-. The improvement of the hydrogen bond network connectivity of the electric double layer by adjusting the interfacial H2O structure together with the optimized HBE and OHBE is proposed to be responsible for the high HOR activity of Ru6Ir/Zn-N-C.

8.
Chemistry ; 30(37): e202400838, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874008

RESUMEN

The hydroxide exchange membrane fuel cells (HEMFCs) are promising but lack of high-performance anode hydrogen oxidation reaction (HOR) electrocatalysts. The platinum group metals (PGMs) have the HOR activity in alkaline medium two to three orders of magnitude lower than those in acid, leading to the high required PGMs amount on anode to achieve high HEMFC performance. The mechanism study demonstrates the hydrogen binding energy of the catalyst determines the alkaline HOR kinetics, and the adsorbed OH and water on the catalyst surface promotes HOR. Iridium (Ir) has a unique advantage for alkaline HOR due to its similar hydrogen binding energy to Pt and enhanced adsorption of OH. However, the HOR activity of Ir/C is still unsatisfied in practical HEMFC applications. Further fine tuning the adsorption of the intermediate on Ir-based catalysts is of great significance to improve their alkaline HOR activity, which can be reasonably realized by structure design and composition regulation. In this concept, we address the current understanding about the alkaline HOR mechanism and summarize recent advances of Ir-based electrocatalysts with enhanced alkaline HOR activity. We also discuss the perspectives and challenges on Ir-based electrocatalysts in the future.

9.
Proc Natl Acad Sci U S A ; 118(43)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34663729

RESUMEN

The CO electrooxidation is long considered invincible in the proton exchange membrane fuel cell (PEMFC), where even a trace level of CO in H2 seriously poisons the anode catalysts and leads to huge performance decay. Here, we describe a class of atomically dispersed IrRu-N-C anode catalysts capable of oxidizing CO, H2, or a combination of the two. With a small amount of metal (24 µgmetal⋅cm-2) used in the anode, the H2 fuel cell performs its peak power density at 1.43 W⋅cm-2 When operating with pure CO, this catalyst exhibits its maximum current density at 800 mA⋅cm-2, while the Pt/C-based cell ceases to work. We attribute this exceptional catalytic behavior to the interplay between Ir and Ru single-atom centers, where the two sites act in synergy to favorably decompose H2O and to further facilitate CO activation. These findings open up an avenue to conquer the formidable poisoning issue of PEMFCs.

10.
Nano Lett ; 23(1): 107-115, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36541945

RESUMEN

In comparison to the well-developed proton-exchange-membrane fuel cells, anion-exchange-membrane fuel cells (AEMFCs) permit adoption of platinum-group-metal (PGM)-free catalysts due to the alkaline environment, giving a substantial cost reduction. However, previous AEMFCs have generally shown unsatisfactory performances due to the lack of effective PGM-free catalysts that can endure harsh fuel cell conditions. Here we report a plasma-assisted synthesis of high-quality nickel nitride (Ni3N) and zirconium nitride (ZrN) employing dinitrogen as the nitrogen resource, exhibiting exceptional catalytic performances toward hydrogen oxidation and oxygen reduction in an alkaline enviroment, respectively. A PGM-free AEMFC assembled by using Ni3N as the anode and ZrN as the cathode delivers power densities of 256 mW cm-2 under an H2-O2 condition and 151 mW cm-2 under an H2-air condition. Furthermore, the fuel cell shows no evidence of degradation after 25 h of operation. This work creates opportunities for developing high-performance and durable AEMFCs based on metal nitrides.


Asunto(s)
Níquel , Platino (Metal) , Membranas , Membrana Celular , Aniones , Protones
11.
Nano Lett ; 23(9): 3826-3834, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115709

RESUMEN

Modifying the atomic and electronic structure of platinum-based alloy to enhance its activity and anti-CO poisoning ability is a vital issue in hydrogen oxidation reaction (HOR). However, the role of foreign modifier metal and the underlying ligand effect is not fully understood. Here, we propose that the ligand effect of single-atom Cu can dynamically modulate the d-band center of Pt-based alloy for boosting HOR performance. By in situ X-ray absorption spectroscopy, our research has identified that the potential-driven structural rearrangement into high-coordination Cu-Pt/Pd intensifies the ligand effect in Pt-Cu-Pd, leading to enhanced HOR performance. Thereby, modulating the d-band structure leads to near-optimal hydrogen/hydroxyl binding energies and reduced CO adsorption energies for promoting the HOR kinetics and the CO-tolerant capability. Accordingly, PtPdCu1/C exhibits excellent CO tolerance even at 1,000 ppm impurity.

12.
Angew Chem Int Ed Engl ; : e202409763, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954763

RESUMEN

Developing non-platinum group metal catalysts for the sluggish hydrogen oxidation reaction (HOR) is critical for alkaline fuel cells. To date, Ni-based materials are the most promising candidates but still suffer from insufficient performance. Herein, we report an unconventional hcp/fcc Ni (u-hcp/fcc Ni) heteronanocrystal with multiple epitaxial hcp/fcc heterointerfaces and coherent twin boundaries, generating rugged surfaces with plenty of asymmetric convex sites. Systematic analyses discover that such convex sites enable the adsorption of *H in unusual bridge positions with weakened binding energy, circumventing the over-strong *H adsorption on traditional hollow positions, and simultaneously stabilizing interfacial *H2O. It thus synergistically optimizes the HOR thermodynamic process as well as reduces the kinetic barrier of the rate-determining Volmer step. Consequently, the developed u-hcp/fcc Ni exhibits the top-rank alkaline HOR activity with a mass activity of 40.6 mA mgNi-1 (6.3 times higher than fcc Ni control) together with superior stability and high CO-tolerance. These results provide a paradigm for designing high-performance catalysts by shifting the adsorption state of intermediates through configuring surface sites.

13.
Angew Chem Int Ed Engl ; 63(24): e202318389, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38613385

RESUMEN

Being an efficient approach to the utilization of hydrogen energy, the hydrogen oxidation reaction (HOR) is of particular significance in the current carbon-neutrality time. Yet the mechanistic picture of the HOR is still blurred, mostly because the elemental steps of this reaction are rapid and highly entangled, especially when deviating from the thermodynamic equilibrium state. Here we report a strategy for decoding the HOR mechanism under operando conditions. In addition to the wide-potential-range I-V curves obtained using gas diffusion electrodes, we have applied the AC impedance spectroscopy to provide independent and complementary kinetic information. Combining multidimensional data sources has enabled us to fit, in mathematical rigor, the core kinetic parameter set in a 5-D data space. The reaction rate of the three elemental steps (Tafel, Heyrovsky, and Volmer reactions), as a function of the overpotential, can thus be distilled individually. Such an undocumented kinetic picture unravels, in detail, how the HOR is controlled by the elemental steps on polarization. For instance, at low polarization region, the Heyrovsky reaction is relatively slow and can be ignored; but at high polarization region, the Heyrovsky reaction will surpass the Tafel reaction. Additionally, the Volmer reaction has been the fastest within overpotentials of interest. Our findings not only offer a better understanding of the HOR mechanism, but also lay the foundation for the development of improved hydrogen energy utilization systems.

14.
Angew Chem Int Ed Engl ; 63(12): e202319618, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38286759

RESUMEN

Efficient dual-single-atom catalysts are crucial for enhancing atomic efficiency and promoting the commercialization of fuel cells, but addressing the sluggish kinetics of hydrogen oxidation reaction (HOR) in alkaline media and the facile dual-single-atom site generation remains formidable challenges. Here, we break the local symmetry of ultra-small ruthenium (Ru) nanoparticles by embedding cobalt (Co) single atoms, which results in the release of Ru single atoms from Ru nanoparticles on reduced graphene oxide (Co1 Ru1,n /rGO). In situ operando spectroscopy and theoretical calculations reveal that the oxygen-affine Co atom disrupts the symmetry of ultra-small Ru nanoparticles, resulting in parasitic Ru and Co dual-single-atom within Ru nanoparticles. The interaction between Ru single atoms and nanoparticles forms effective active centers. The parasitism of Co atoms modulates the adsorption of OH intermediates on Ru active sites, accelerating HOR kinetics through faster formation of *H2 O. As anticipated, Co1 Ru1,n /rGO exhibits ultrahigh mass activity (7.68 A mgRu -1 ) at 50 mV and exchange current density (0.68 mA cm-2 ), which are 6 and 7 times higher than those of Ru/rGO, respectively. Notably, it also displays exceptional durability surpassing that of commercial Pt catalysts. This investigation provides valuable insights into hybrid multi-single-atom and metal nanoparticle catalysis.

15.
Angew Chem Int Ed Engl ; 63(5): e202315148, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078596

RESUMEN

Tracking the trajectory of hydrogen intermediates during hydrogen electro-catalysis is beneficial for designing synergetic multi-component catalysts with division of chemical labor. Herein, we demonstrate a novel dynamic lattice hydrogen (LH) migration mechanism that leads to two orders of magnitude increase in the alkaline hydrogen oxidation reaction (HOR) activity on Pd@Pt over pure Pd, even ≈31.8 times mass activity enhancement than commercial Pt. Specifically, the polarization-driven electrochemical hydrogenation process from Pd@Pt to PdHx @Pt by incorporating LH allows more surface vacancy Pt sites to increase the surface H coverage. The inverse dehydrogenation process makes PdHx as an H reservoir, providing LH migrates to the surface of Pt and participates in the HOR. Meanwhile, the formation of PdHx induces electronic effect, lowering the energy barrier of rate-determining Volmer step, thus resulting in the HOR kinetics on Pd@Pt being proportional to the LH concentration in the in situ formed PdHx @Pt. Moreover, this dynamic catalysis mechanism would open up the catalysts scope for hydrogen electro-catalysis.

16.
Angew Chem Int Ed Engl ; : e202406888, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007540

RESUMEN

Transition metal/p-block compounds are regarded as the most essential materials for electrochemical energy converting systems involving various electrocatalysis. Understanding the role of p-block element on the interaction of key intermediates and interfacial water molecule orientation at the polarized catalyst-electrolyte interface during the electrocatalysis is important for rational designing advanced p-block modified metal electrocatalysts. Herein, taking a sequence of ruthenium phosphides (including Ru2P, RuP and RuP2) as model catalysts, we establish a volcanic-relation between P-proportion and alkaline hydrogen oxidation reaction (HOR) activity. The dominant role of P for regulating hydroxyl binding energy is validated by active sites poisoning experiments, pH-dependent infection-point behavior, in situ surface enhanced absorption spectroscopy, and density functional theory calculations, in which P could tailor the d-band structure of Ru, optimize the hydroxyl adsorption sites across the Ru-P moieties, thereby leading to improved proportion of strongly hydrogen-bonded water and facilitated proton-coupled electron transfer process, which are responsible for the enhanced alkaline HOR performance.

17.
Angew Chem Int Ed Engl ; : e202402496, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38863241

RESUMEN

Promoting the hydrogen oxidation reaction (HOR) activity and poisoning tolerance of electrocatalysts is crucial for the large-scale application of hydrogen-oxygen fuel cell. However, it is severely hindered by the scaling relations among different intermediates. Herein, lattice-contracted Pt-Rh in ultrasmall ternary L12-(Pt0.9Rh0.1)3V intermetallic nanoparticles (~2.2 nm) were fabricated to promote the HOR performances through an oxides self-confined growth strategy. The prepared (Pt0.9Rh0.1)3V displayed 5.5/3.7 times promotion in HOR mass/specific activity than Pt/C in pure H2 and dramatically limited activity attenuation in 1000 ppm CO/H2 mixture. In-situ Raman spectra tracked the superior anti-CO* capability as a result of compressive strained Pt, and the adsorption of oxygen-containing species was promoted due to the dual-functional effect. Further assisted by density functional theory calculations, both the adsorption of H* and CO* on (Pt0.9Rh0.1)3V were reduced compared with that of Pt due to lattice contraction, while the adsorption of OH* was enhanced by introducing oxyphilic Rh sites. This work provides an effective tactic to stimulate the electrocatalytic performances by optimizing the adsorption of different intermediates severally.

18.
Angew Chem Int Ed Engl ; 63(28): e202404761, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38664844

RESUMEN

Ruthenium (Ru) is considered a promising candidate catalyst for alkaline hydroxide oxidation reaction (HOR) due to its hydrogen binding energy (HBE) like that of platinum (Pt) and its much higher oxygenophilicity than that of Pt. However, Ru still suffers from insufficient intrinsic activity and CO resistance, which hinders its widespread use in anion exchange membrane fuel cells (AEMFCs). Here, we report a hybrid catalyst (RuCo)NC+SAs/N-CNT consisting of dilute RuCo alloy nanoparticles and atomically single Ru and Co atoms on N-doped carbon nanotubes The catalyst exhibits a state-of-the-art activity with a high mass activity of 7.35 A mgRu -1. More importantly, when (RuCo)NC+SAs/N-CNT is used as an anode catalyst for AEMFCs, its peak power density reaches 1.98 W cm-2, which is one of the best AEMFCs properties of noble metal-based catalysts at present. Moreover, (RuCo)NC+SAs/N-CNT has superior long-time stability and CO resistance. The experimental and density functional theory (DFT) results demonstrate that the dilute alloying and monodecentralization of the exotic element Co greatly modulates the electronic structure of the host element Ru, thus optimizing the adsorption of H and OH and promoting the oxidation of CO on the catalyst surface, and then stimulates alkaline HOR activity and CO tolerance of the catalyst.

19.
Angew Chem Int Ed Engl ; 63(17): e202401453, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38366202

RESUMEN

Searching for highly efficient and economical electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the development of alkaline polymer membrane fuel cells. Here, we report a valid strategy to active pyrite-type RuS2 for alkaline HOR electrocatalysis by introducing sulfur vacancies. The obtained S-vacancies modified RuS2-x exhibits outperformed HOR activity with a current density of 0.676 mA cm-2 and mass activity of 1.43 mA µg-1, which are 15-fold and 40-fold improvement than those of Ru catalyst. In situ Raman spectra demonstrate the formation of S-H bond during the HOR process, identifying the S atom of RuS2-x is the real active site for HOR catalysis. Density functional theory calculations and experimental results including in situ surface-enhanced infrared absorption spectroscopy suggest the introduction of S vacancies can rationally modify the p orbital of S atoms, leading to enhanced binding strength between the S sites and H atoms on the surface of RuS2-x, together with the promoted connectivity of hydrogen-bonding network and lowered water formation energy, contributes to the enhanced HOR performance.

20.
Angew Chem Int Ed Engl ; : e202410832, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975967

RESUMEN

Atomically precise supported nanocluster catalysts (APSNCs), which feature exact atomic composition, well-defined structures, and unique catalytic properties, offer an exceptional platform for understanding the structure-performance relationship at the atomic level. However, fabricating APSNCs with precisely controlled and uniform metal atom numbers, as well as maintaining a stable structure, remains a significant challenge due to uncontrollable dispersion and easy aggregation during synthetic and catalytic processes. Herein, we developed an effective ligand engineering strategy to construct a Pt6 nanocluster catalyst stabilized on oxidized carbon nanotubes (Pt6/OCNT). The structural analysis revealed that Pt6 nanoclusters in Pt6/OCNT were fully exposed and exhibited a planar structure. Furthermore, the obtained Pt6/OCNT exhibited outstanding acidic HOR performances with a high mass activity of 18.37 A·mgpt-1 along with excellent stability during a 24 h constant operation and good CO tolerance, surpassing those of the commercial Pt/C. Density functional theory (DFT) calculations demonstrated that the unique geometric and electronic structures of Pt6 nanoclusters on OCNT altered the hydrogen adsorption energies on catalytic sites and thus lowered the HOR theoretical overpotential. This work presents a new prospect for designing and synthesizing advanced APSNCs for efficient energy electrocatalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA