Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Small ; 20(32): e2309744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38507730

RESUMEN

The development of hydrogen (H2) gas sensors is essential for the safe and efficient adoption of H2 gas as a clean, renewable energy source in the challenges against climate change, given its flammability and associated safety risks. Among various H2 sensors, gasochromic sensors have attracted great interest due to their highly intuitive and low power operation, but slow kinetics, especially slow recovery rate limited its further practical application. This study introduces Pd-decorated amorphous WO3 nanorods (Pd-WO3 NRs) as an innovative gasochromic H2 sensor, demonstrating rapid and highly reversible color changes for H2 detection. In specific, the amorphous nanostructure exhibits notable porosity, enabling rapid detection and recovery by facilitating effective H2 gas interaction and efficient diffusion of hydrogen ions (H+) dissociated from the Pd nanoparticles (Pd NPs). The optimized Pd-WO3 NRs sensor achieves an impressive response time of 14 s and a recovery time of 1 s to 5% H2. The impressively fast recovery time of 1 s is observed under a wide range of H2 concentrations (0.2-5%), making this study a fundamental solution to the challenged slow recovery of gasochromic H2 sensors.

2.
Sensors (Basel) ; 24(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38794000

RESUMEN

Detecting hydrogen leaks remains a pivotal challenge demanding robust solutions. Among diverse detection techniques, the fiber-optic method distinguishes itself through unique benefits, such as its distributed measurement properties. The adoption of hydrogen-sensitive materials coated on fibers has gained significant traction in research circles, credited to its operational simplicity and exceptional adaptability across varied conditions. This manuscript offers an exhaustive investigation into hydrogen-sensitive materials and their incorporation into fiber-optic hydrogen sensors. The research profoundly analyzes the sensor architectures, performance indicators, and the spectrum of sensing materials. A detailed understanding of these sensors' potentials and constraints emerges through rigorous examination, juxtaposition, and holistic discourse. Furthermore, this analysis judiciously assesses the inherent challenges tied to these systems, simultaneously highlighting potential pathways for future innovation. By spotlighting the hurdles and opportunities, this paper furnishes a view on hydrogen sensing technology, particularly related to optical fiber-based applications.

3.
Sensors (Basel) ; 24(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257641

RESUMEN

In recent years, hydrogen energy has garnered attention as a potential solution for mitigating greenhouse gas emissions. However, concerns regarding the inherent risk of hydrogen gas leakage and potential explosions have necessitated the development of advanced sensors. Within our research group, we have innovated an ultrathin platinum (Pt) film hydrogen sensor that gauges resistance changes in Pt thin films when exposed to hydrogen gas. Notably, the sensitivity of each sensor is contingent upon the thickness of the Pt film. To address the challenge of detecting hydrogen using multiple sensors, we integrated the ultrathin Pt film as a resistance element within a twin-T type notch filter. This filter exhibits a distinctive reduction in output signals at a specific frequency. The frequency properties of the notch filter dynamically alter with changes in the resistance of the Pt film induced by hydrogen exposure. Consequently, the ultrathin Pt film hydrogen sensor monitors output signal variations around the notch frequency, responding to shifts in frequency properties. This innovative approach enables the electrical control of sensor sensitivity by adjusting the operating frequency in proximity to the notch frequency. Additionally, the simultaneous detection of hydrogen by multiple sensors was successfully achieved by interconnecting sensors with distinct notch frequencies in series.

4.
Sensors (Basel) ; 24(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400388

RESUMEN

In this work, an evanescent Bragg grating sensor inscribed in a few-mode planar polymer waveguide was integrated into microchannel structures and characterized by various chemical applications. The planar waveguide and the microchannels consisted of epoxide-based polymers. The Bragg grating structure was postprocessed by using point-by-point direct inscription technology. By monitoring the central wavelength shift of the reflected Bragg signal, the sensor showed a temperature sensitivity of -47.75 pm/K. Moreover, the functionality of the evanescent field-based measurements is demonstrated with two application examples: the refractive index sensing of different aqueous solutions and gas-phase hydrogen concentration detection. For the latter application, the sensor was additionally coated with a functional layer based on palladium nanoparticles. During the refractive index sensing measurement, the sensor achieved a sensitivity of 6.5 nm/RIU from air to 99.9% pure isopropyl alcohol. For the gas-phase hydrogen detection, the coated sensor achieved a reproducible concentration detection up to 4 vol% hydrogen. According to the reported experimental results, the integrated Bragg-grating-based waveguide sensor demonstrates high potential for applications based on the lab-on-a-chip concept.

5.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991983

RESUMEN

The influence of structure and technological parameters (STPs) on the metrological characteristics of hydrogen sensors based on MISFETs has been investigated. Compact electrophysical and electrical models connecting the drain current, the voltage between the drain and the source and the voltage between the gate and the substrate with the technological parameters of the n-channel MISFET as a sensitive element of the hydrogen sensor are proposed in a general form. Unlike the majority of works, in which the hydrogen sensitivity of only the threshold voltage of the MISFET is investigated, the proposed models allow us to simulate the hydrogen sensitivity of gate voltages or drain currents in weak and strong inversion modes, taking into account changes in the MIS structure charges. A quantitative assessment of the effect of STPs on MISFET performances (conversion function, hydrogen sensitivity, gas concentration measurement errors, sensitivity threshold and operating range) is given for a MISFET with a Pd-Ta2O5-SiO2-Si structure. In the calculations, the parameters of the models obtained on the basis of the previous experimental results were used. It was shown how STPs and their technological variations, taking into account the electrical parameters, can affect the characteristics of MISFET-based hydrogen sensors. It is noted, in particular, that for MISFET with submicron two-layer gate insulators, the key influencing parameters are their type and thickness. Proposed approaches and compact refined models can be used to predict performances of MISFET-based gas analysis devices and micro-systems.

6.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36904619

RESUMEN

We discuss the effect of topological inhomogeneity of very thin metallic conductometric sensors on their response to external stimuli, such as pressure, intercalation, or gas absorption, that modify the material's bulk conductivity. The classical percolation model was extended to the case in which several independent scattering mechanisms contribute to resistivity. The magnitude of each scattering term was predicted to grow with the total resistivity and diverge at the percolation threshold. We tested the model experimentally using thin films of hydrogenated palladium and CoPd alloys where absorbed hydrogen atoms occupying the interstitial lattice sites enhance the electron scattering. The hydrogen scattering resistivity was found to grow linearly with the total resistivity in the fractal topology range in agreement with the model. Enhancement of the absolute magnitude of the resistivity response in the fractal range thin film sensors can be particularly useful when the respective bulk material response is too small for reliable detection.

7.
Sensors (Basel) ; 23(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37050525

RESUMEN

We investigated the hydrogen gas sensors based on AlGaN/GaN high electron mobility transistors (HEMTs) for high temperature sensing operation. The gate area of the sensor was functionalized using a 10 nm Pd catalyst layer for hydrogen gas sensing. A thin WO3 layer was deposited on top of the Pd layer to enhance the sensor selectivity toward hydrogen gas. At 200 °C, the sensor exhibited high sensitivity of 658% toward 4%-H2, while exhibiting only a little interaction with NO2, CH4, CO2, NH3, and H2S. From 150 °C to 250 °C, the 10 ppm hydrogen response of the sensor was at least eight times larger than other target gases. These results showed that this sensor is suitable for H2 detection in a complex gas environment at a high temperature.

8.
Nano Lett ; 22(7): 3157-3164, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35191710

RESUMEN

Bimetallic Pd-Ag alloy nanoparticles exhibit satisfactory H2-sensing improvements and show application potential for H2 sensor construction. However, the long-term stability of the H2 sensor with Pd-Ag nanoparticles as the catalyst is found to dramatically decrease during operation. Herein, gas-cell in situ transmission electron microscopy (TEM) is used to investigate the failure mechanisms of Pd-Ag nanoparticles under operation conditions. Based on the in situ TEM results, the Pd-Ag nanoparticles have two failure mechanisms: particles coalescence at 300 °C and phase segregation at 500 °C. Guided by the failure mechanisms, the H2 sensor is comprehensively optimized based on the working temperature and the amount of Pd-Ag alloy nanoparticles. The optimized sensor exhibits satisfactory H2-sensing properties, and the response decline of the sensor after 1 month is negligible. The revealing of the failure mechanisms with in situ TEM technology provides a valuable route for developing gas sensors with high long-term stability.

9.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836828

RESUMEN

Hydrogen (H2) sensors are critical to various applications such as the situation where H2 is used as the clean energy for industry or the indicator for human disease diagnosis. Palladium (Pd) is widely used as the hydrogen sensing material in different types of sensors. Optical fiber H2 sensors are particularly promising due to their compactness and spark-free operation. Here, we report a Fabry-Pérot (FP)-cavity-based H2 sensor that is formed with a freestanding Pd membrane and integrated on a conventional single-mode optical fiber end. The freestanding Pd membrane acts both as the active hydrogen sensing material and as one of the reflective mirrors of the cavity. When the Pd film absorbs H2 to form PdHx, it will be stretched, resulting in a change of the cavity length and thus a shift of the interference spectrum. The H2 concentration can be derived from the amplitude of the wavelength shift. Experimental results showed that H2 sensors based on suspended Pd membranes can achieve a detection sensitivity of about 3.6 pm/ppm and a detection limit of about 3.3 ppm. This highly sensitive detection scheme is expected to find applications for sensing low-concentration H2.

10.
Chem Rec ; 22(7): e202200090, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35703683

RESUMEN

Hydrogen (H2 ) is known as the key player in the alternative and renewable energy revolution and henceforth H2 production, transportation, storage and usage have been a major interest of current research. However, due to severe safety concerns, strategies are indispensable to devise superior H2 sensors, particularly selective and sensitive H2 sensors. In this personal account, three specific gas sensing constructs; zinc oxide (ZnO) nanostructures-, noble metal nanoparticles-decorated ZnO- and noble metal nanoparticles-decorated ZnO nanostructures on reduced graphene oxide (rGO)-based H2 sensors have been demonstrated. The dynamic response and H2 sensing characteristics of ZnO nanostructures-based H2 sensors were found to be improved compared to those of pristine ZnO. High-resolution field emission scanning electron microscopy (FESEM) confirmed the flower-like nanostructures that had higher surface area around the nanoscale petals. The mechanism behind the superior sensing characteristics of ZnO nanostructures-based H2 sensor has been demonstrated. Decoration of ZnO nanostructures with noble metal nanoparticles, particularly platinum (Pt) and gold (Au) was observed to be useful in achieving better H2 sensing performance compared to that of ZnO nanostructures. The Pt- and Au-decorated ZnO nanostructures followed the well-known "Spill-over" mechanism in enhancing the H2 sensing characteristics. Abundant free electrons/holes generation and higher conductivity are two important parameters for designing selective and sensitive gas sensors. In this context, a hybrid nanocomposite, rGO-ZnO has been developed and decorated with noble metal nanoparticles, particularly Pt and Au. The ultimate sensing material has been characterized and compared to those of pristine ZnO, ZnO nanostructures and Pt- and Au-decorated ZnO for H2 gas sensing applications. Such systemic and focus strategies is critical not only for developing efficient H2 gas sensors but also for better understanding the mechanisms underlying such superior performance.


Asunto(s)
Nanoestructuras , Óxido de Zinc , Oro/química , Hidrógeno/química , Nanoestructuras/química , Platino (Metal) , Zinc , Óxido de Zinc/química
11.
Nanotechnology ; 33(29)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35439751

RESUMEN

We report on the usability aspect of triphenylene ligand-based metal-organic frameworks (MOF) as the potential gas sensing element in chemiresistive devices. Among various possibilities, we explored mono-metallic (Nickel-based) and bi-metallic (Nickel and copper-based) in room temperature gas sensing. Our investigations suggest that the chemiresistive device based on nickel catecholate MOFs were highly sensitive to ethyl alcohol gas in the concentration range of 5-100 ppm with decent sensing parameters such as response time, recovery time, repeatability, stability, etc. We also investigated bimetallic (Nickel and copper) catecholate based MOFs in gas sensing with different metallic content ratios (Cu: Ni:: 60:40 and 40:60). We found that the 1D Cu0.6Ni0.4-CAT nanostructures-based gas sensor to be selective towards H2gas (0.2-7 ppm) at room temperature. We further explored the gas sensing abilities of Cu0.4Ni0.6-CAT based devices, and we found them to be selective towards NO2gas. However, it was not possible to obtain the current versus concentration curve due to the gas molecules' aggressive chemisorption. However, the device could perform well (with a hysteresis error of ∼10%) for detecting NO gas (which has the 2nd best absolute response after NO2). These results indicate that the ratio of metal ions in the MOF directly influences the sensing capabilities. Hence, rational synthetic variations in the metal content in MOF can lead to the design and develop highly selective and sensitive chemiresistive sensors.

12.
Sensors (Basel) ; 22(10)2022 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-35632336

RESUMEN

To stabilize the detection signal of palladium-based hydrogen sensors on paper substrates, a graphite intermediate layer was painted on the surface of paper. The graphite-on-paper (GOP) substrate offers advantages such as good thermo-electrical conductivity, low cost, and uncomplicated preparation technology. Quasi-1-dimensional palladium (Pd) thin films with 8 nm and 60 nm thicknesses were deposited on the GOP substrates using the vacuum evaporation technique. Thanks to the unique properties of the GOP substrate, a continuous Pd microfiber network structure appeared after deposition of the ultra-thin Pd film. Additionally, the sensing performance of the palladium-based hydrogen sensor was not affected, whether using GOP or paper substrate at 25 °C. Surprisingly, heating-induced loss of sensitivity was restrained due to the increased electrical conductivity of the GOP substrate at 50 °C.

13.
Sensors (Basel) ; 20(24)2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33352819

RESUMEN

In many industrial fields, there is a need to design and characterize on-line and on-board hydrogen monitoring tools able to operate under extreme conditions. One of these applications is in future nuclear fusion reactors, which will use hydrogen isotopes as a plasma fuel. In this context, the measurement of the concentration of these hydrogen isotopes will be of interest to ensure the correct operating conditions for such reactors. Hydrogen sensors based on solid-state electrolytes will be the first step in the development of new analytical tools able to quantify deuterium and tritium in aggressive environments. In the present work, amperometric hydrogen sensors were constructed and evaluated using two solid-state electrolytes, BaCe0.6Zr0.3Y0.1O3-α and Sr(Ce0.9Zr0.1)0.95Yb0.05O3-α. Prototype sensors were built in order to study their sensitivity in on-line measurements. The experiments were performed in a reactor with a hydrogen-controlled environment. The sensors were evaluated at 500 and 600 °C in amperometric mode by applying 2 and 4 V voltages between electrodes. Both sensors showed increases in sensitivity when the temperature or voltage were increased.

14.
Sensors (Basel) ; 20(14)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660031

RESUMEN

Hydrogen sensor technologies have been rapidly developing. For effective and safe sensing, we proposed a hydrogen sensor composed of magnesium (Mg), silver (Ag), and palladium (Pd) nano-blocks that overcomes the spectral resolution limit. This sensor exploited the properties of Mg and Pd when absorbing hydrogen. Mg became a dielectric material, and the atomic lattice of Pd expanded. These properties led to changes in the plasmonic gap mode between the nano-blocks. Owing to the changing gap mode, the far-field scattering pattern significantly changed with the hydrogen concentration. Thus, sensing the hydrogen concentration was able to be achieved simply by detecting the far-field intensity at a certain angle for incident light with a specific wavelength.

15.
Sensors (Basel) ; 19(6)2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875795

RESUMEN

A highly sensitive and flexible hydrogen sensor based on organic nanofibers decorated by Pd nanoparticles (NPs) was designed and fabricated for low-concentration hydrogen detection. Pd NPs were deposited on organic nanofiber materials by DC magnetron sputtering. The temperature dependence of the sensitivity at 25 ppm H2 was characterized and discussed, and the maximum response of the sensor increased linearly with increasing measurement temperature. Performances of the hydrogen sensor were investigated with hydrogen concentration ranging from 5 ppm to 50 ppm. This sensor exhibits high sensitivity, with the response up to 6.55% for H2 as low as 5 ppm, and the output response of the hydrogen sensor increased linearly with the square root of hydrogen concentration. A cycling test between pure nitrogen and 25 ppm hydrogen concentration was performed, and the hydrogen sensor exhibited excellent consistency.

16.
Sensors (Basel) ; 19(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315234

RESUMEN

In this paper, the PdOx nanoparticles modified SnO2 are prepared using sputtering and wet chemical methods. The SnO2 nanoparticles are separately added to a concentration of 0.75% to 10% PdCl2 to obtain a PdCl2/SnO2 composite material, which is calcined for 1 to 2 h at the temperatures of 120 °C, 250 °C, 450 °C and 600 °C. The PdOx/SnO2 nanocomposite was characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD) and transmission electron microscopy (TEM). Microstructural observations revealed PdOx with different chemical states attached to the surface of SnO2. Hydrogen response change tests were performed on the obtained PdOx/SnO2 gas sensing materials. The results show that the high gas sensing performance may be attributed to the contribution of the PdOx-loaded SnO2. In hydrogen, the best sensitivity response was attained at 80 °C, which is 60 times that of pristine SnO2. It clarifies the role of PdOx in the gas sensing mechanisms.

17.
Sensors (Basel) ; 19(24)2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31888143

RESUMEN

A Pd-functionalized hydrogen gas sensor was fabricated on an AlGaN/GaN-on-Si heterostructure platform. The AlGaN layer under the Pd catalyst area was partially recessed by plasma etching, which resulted in a low standby current level enhancing the sensor response. Sensor stability and power consumption depending on operation conditions were carefully investigated using two different bias modes: constant voltage bias mode and constant current bias mode. From the stability point of view, high voltage operation is better than low voltage operation for the constant voltage mode of operation, whereas low current operation is preferred over high current operation for the constant current mode of operation. That is, stable operation with lower standby power consumption can be achieved with the constant current bias operation. The fabricated AlGaN/GaN-on-Si hydrogen sensor exhibited excellent sensing characteristics; a response of 120% with a response time of < 0.4 s at a bias current density of 1 mA/mm at 200 °C. The standby power consumption was only 0.54 W/cm2 for a sensing catalyst area of 100 × 24 µm2.

18.
Sensors (Basel) ; 19(23)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816815

RESUMEN

A laser-based hydrogen (H2) sensor using wavelength modulation spectroscopy (WMS) was developed for the contactless measurement of molecular hydrogen. The sensor uses a distributed feedback (DFB) laser to target the H2 quadrupole absorption line at 2121.8 nm. The H2 absorption line exhibited weak collisional broadening and strong collisional narrowing effects. Both effects were investigated by comparing measurements of the absorption linewidth with detailed models using different line profiles including collisional narrowing effects. The collisional broadening and narrowing parameters were determined for pure hydrogen as well as for hydrogen in nitrogen and air. The performance of the sensor was evaluated and the sensor applicability for H2 measurement in a range of 0-10 %v of H2 was demonstrated. A precision of 0.02 %v was achieved with 1 m of absorption pathlength (0.02 %v∙m) and 1 s of integration time. For the optimum averaging time of 20 s, precision of 0.005 %v∙m was achieved. A good linear relationship between H2 concentration and sensor response was observed. A simple and robust transmitter-receiver configuration of the sensor allows in situ installation in harsh industrial environments.

19.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-31842347

RESUMEN

Our study aims to fabricate a hydrogen sensor based on thermal stability analysis of Ta2O5 film, and to determine the effect of Pd electrodes on the hydrogen sensor at high temperatures. First, in order to ensure high-temperature stability of silicon carbide (SiC)-based hydrogen sensors, the thermal stability of Ta2O5 dielectric thin film at temperatures above 900 °C was studied. The sensor structure consisted of a metal-insulator-semiconductor (MIS) and a tantalum oxide (Ta2O5) dielectric film was formed by rapid thermal oxidation (RTO). The Ta2O5 film was assessed through SEM, TEM, SIMS, and dielectric breakdown strength to observe thermal stability. Secondly, hydrogen sensors using a SiC substrate were fabricated, with the process considering thermal stability. The response characteristics for hydrogen were evaluated using three types of sensors with different Pd electrode patterns. The patterns of the Pd electrode were designed as squares or grid shapes, and were characterized by 100%, 75%, and 50% area ratios of Pd electrodes covering the Ta2O5 layer. The results showed that the sensor with a 100% area ratio of the Pd electrode had better sensitivity and linear response characteristics compared to sensors with a 50% area ratio of the Pd electrode.

20.
Sensors (Basel) ; 19(20)2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623102

RESUMEN

Regarding the use of hydrogen as a fuel, it is necessary to measure its concentration in air at room temperature. In this paper, sensitive composite films have been developed for surface acoustic wave (SAW) sensors, using quantum dots (QDs) and polymers. Si/SiO2 QDs were used due to having a high specific surface area, which considerably improves the sensitivity of the sensors compared to those that only have a polymer. Si/SiO2 QDs were obtained by laser ablation and analyzed by X-ray diffraction and transmission electron microscopy (TEM). Two types of polymers were used: polydimethylsiloxane (PDMS) and polymethylmethacrylate (PMMA). Polymer and polymer with QDs compositions were deposited on the sensor substrate by drop casting. A heat treatment was performed on the films at 80 °C with a thermal dwell of two hours. The sensors obtained were tested at different hydrogen concentrations at room temperature. A limit of detection (LOD) of 452 ppm was obtained by the sensor with PDMS and Si/SiO2 QDs, which was heat treated. The results demonstrated the potential of using QDs to improve the sensitivity of the SAW sensors and to achieve a heat treatment that increases its adsorption capacity of the gas molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA