Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732790

RESUMEN

With the development of biometric identification technology, finger vein identification has received more and more widespread attention for its security, efficiency, and stability. However, because of the performance of the current standard finger vein image acquisition device and the complex internal organization of the finger, the acquired images are often heavily degraded and have lost their texture characteristics. This makes the topology of the finger veins inconspicuous or even difficult to distinguish, greatly affecting the identification accuracy. Therefore, this paper proposes a finger vein image recovery and enhancement algorithm using atmospheric scattering theory. Firstly, to normalize the local over-bright and over-dark regions of finger vein images within a certain threshold, the Gamma transform method is improved in this paper to correct and measure the gray value of a given image. Then, we reconstruct the image based on atmospheric scattering theory and design a pixel mutation filter to segment the venous and non-venous contact zones. Finally, the degraded finger vein images are recovered and enhanced by global image gray value normalization. Experiments on SDUMLA-HMT and ZJ-UVM datasets show that our proposed method effectively achieves the recovery and enhancement of degraded finger vein images. The image restoration and enhancement algorithm proposed in this paper performs well in finger vein recognition using traditional methods, machine learning, and deep learning. The recognition accuracy of the processed image is improved by more than 10% compared to the original image.


Asunto(s)
Algoritmos , Dedos , Procesamiento de Imagen Asistido por Computador , Venas , Humanos , Dedos/irrigación sanguínea , Dedos/diagnóstico por imagen , Venas/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Identificación Biométrica/métodos , Atmósfera
2.
Sensors (Basel) ; 22(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35590850

RESUMEN

Due to the light scattered by atmospheric aerosols, the amplitude image contrast is degraded and the depth measurement is greatly distorted for time-of-flight (ToF) imaging in fog. The problem limits ToF imaging to be applied in outdoor settings, such as autonomous driving. To improve the quality of the images captured by ToF cameras, we propose a polarization phasor imaging method for image recovery in foggy scenes. In this paper, optical polarimetric defogging is introduced into ToF phasor imaging, and the degree of polarization phasor is proposed to estimate the scattering component. A polarization phasor imaging model is established, aiming at separating the target component from the signal received by ToF cameras to recover the amplitude and depth information. The effectiveness of this method is confirmed by several experiments with artificial fog, and the experimental results demonstrate that the proposed method significantly improves the image quality, with robustness in different thicknesses of fog.


Asunto(s)
Diagnóstico por Imagen , Tiempo (Meteorología) , Análisis Espectral
3.
J Microsc ; 275(1): 24-35, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31026068

RESUMEN

The quality and information content of biological images can be significantly enhanced by postacquisition processing using deconvolution and denoising. However, when imaging complex biological samples, such as neurons, stained with fluorescence labels, the signal level of different structures can differ by several orders of magnitude. This poses a challenge as current image reconstruction algorithms are focused on recovering low signals and generally have sample-dependent performance, requiring tedious manual tuning. This is one of the main hurdles for their wide adoption by nonspecialists. In this work, we modify the general constrained reconstruction method (in our case utilizing a total variation constraint) so that both bright and dim structures can drive the deconvolution with equal force. In this way, we can simultaneously obtain high-quality reconstruction across a wide range of signals within a single image or image sequence. The algorithm is tested on both simulated and experimental data. When compared with current state-of-art algorithms, our algorithm outperforms others in terms of maintaining the resolution in the high-signal areas and reducing artefacts in the low-signal areas. The algorithm was also tested on image sequences where one set of parameters are used to reconstruct all images, with blind evaluation by a group of biologists demonstrating a marked preference for the images produced by our method. This means that our method is suitable for batch processing of image sequences obtained from either spatial or temporal scanning. LAY DESCRIPTION: Fluorescence microscopy images of complex biological samples contain a wide range of signal levels. This signal variation leads current reconstruction algorithms, which aim to enhance the quality of the raw images, to have sample-dependent performance. In this work, we design a new optimization that allows the reconstruction to "pay equal eqattention to" both bright and dim structures. In this way, we can simultaneously recover both bright and dim structures within a single image or image sequence, as validated when the algorithm was quantitatively tested on both simulated and experimental data. When our method was evaluated alongside current state of art algorithms by a group of biologists, our algorithm was considered qualitatively superior.


Asunto(s)
Algoritmos , Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Televisión , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Microtúbulos , Neuronas , Relación Señal-Ruido
4.
IEEE Trans Signal Process ; 66(1): 236-250, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30140146

RESUMEN

We consider the recovery of a continuous domain piecewise constant image from its non-uniform Fourier samples using a convex matrix completion algorithm. We assume the discontinuities/edges of the image are localized to the zero level-set of a bandlimited function. This assumption induces linear dependencies between the Fourier coefficients of the image, which results in a two-fold block Toeplitz matrix constructed from the Fourier coefficients being low-rank. The proposed algorithm reformulates the recovery of the unknown Fourier coefficients as a structured low-rank matrix completion problem, where the nuclear norm of the matrix is minimized subject to structure and data constraints. We show that exact recovery is possible with high probability when the edge set of the image satisfies an incoherency property. We also show that the incoherency property is dependent on the geometry of the edge set curve, implying higher sampling burden for smaller curves. This paper generalizes recent work on the super-resolution recovery of isolated Diracs or signals with finite rate of innovation to the recovery of piecewise constant images.

5.
Comput Methods Programs Biomed ; 200: 105868, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33261943

RESUMEN

BACKGROUND AND OBJECTIVE: There are various artificial markers in ultrasound images of thyroid nodules, which have impact on subsequent processing and computer-aided diagnosis. The purpose of this study was to develop an approach to automatically remove artifacts and restore ultrasound images of thyroid nodules. METHODS: Fifty ultrasound images with manually induced artifacts were selected from publicly available and self-collected datasets. A combined approach was developed which consisted of two steps, artifacts detection and removal of the detected artifacts. Specifically, a novel edge-connection algorithm was used for artifact detection, detection accuracy and false discovery rate were used to evaluate the performance of artifact detection approaches. Criminisi algorithm was used for image restoration with peak signal-to-noise ratio (PSNR) and mean gradient difference to evaluate its performance. In addition, computation complexity was evaluated by execution time of relevant algorithms. RESULTS: Results revealed that the proposed joint approach with edge-connection and Criminisi algorithm could achieve automatic artifacts removal. Mean detection accuracy and mean false discovery rate of the proposed edge-connection algorithm for the 50 ultrasound images were 0.86 and 1.50. Mean PSNR of the 50 restored images by Criminisi algorithm was 36.64 dB, and mean gradient difference of the restored images was -0.002 compared with the original images. CONCLUSIONS: The proposed combined approach had a good detection accuracy for different types of manually induced artifacts, and could significantly improve PSNR of the ultrasound images. The proposed combined approach may have potential use for the repair of ultrasound images with artifacts.


Asunto(s)
Artefactos , Nódulo Tiroideo , Algoritmos , Humanos , Procesamiento de Imagen Asistido por Computador , Relación Señal-Ruido , Nódulo Tiroideo/diagnóstico por imagen , Ultrasonografía
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(2): 292-298, 2021 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-33624605

RESUMEN

We propose an algorithm for registration between brain tumor images and normal brain images based on tissue recovery. U-Net is first used in BraTS2018 dataset to segment the brain tumors, and PConv-Net is then used to simulate the generation of missing normal tissues in the tumor region to replace the tumor region. Finally, the normal brain image is registered to the tissue recovery brain image. We evaluated the effectiveness of this method by comparing the registration results of the repaired image and the tumor image corresponding to the surrounding tissues of the tumor area. The experimental results showed that the proposed method could reduce the effect of pathological variation, achieve a high registration accuracy, and effectively simulate and generate normal tissues to replace the tumor regions, thus improving the registration effect between brain tumor images and normal brain images.


Asunto(s)
Neoplasias Encefálicas , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen , Humanos
7.
Neural Netw ; 113: 41-53, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30780044

RESUMEN

This paper presents a deep associative neural network (DANN) based on unsupervised representation learning for associative memory. In brain, the knowledge is learnt by associating different types of sensory data, such as image and voice. The associative memory models which imitate such a learning process have been studied for decades but with simpler architectures they fail to deal with large scale complex data as compared with deep neural networks. Therefore, we define a deep architecture consisting of a perception layer and hierarchical propagation layers. To learn the network parameters, we define a probabilistic model for the whole network inspired from unsupervised representation learning models. The model is optimized by a modified contrastive divergence algorithm with a novel iterated sampling process. After training, given a new data or corrupted data, the correct label or corrupted part is associated by the network. The DANN is able to achieve many machine learning problems, including not only classification, but also depicting the data given a label and recovering corrupted images. Experiments on MNIST digits and CIFAR-10 datasets demonstrate the learning capability of the proposed DANN.


Asunto(s)
Aprendizaje por Asociación , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas/tendencias , Aprendizaje Automático no Supervisado/tendencias , Algoritmos , Humanos , Modelos Estadísticos , Reconocimiento de Normas Patrones Automatizadas/métodos
8.
Front Neurosci ; 13: 333, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024244

RESUMEN

The presence of pathologies in magnetic resonance (MR) brain images causes challenges in various image analysis areas, such as registration, atlas construction and atlas-based segmentation. We propose a novel method for the simultaneous recovery and segmentation of pathological MR brain images. Low-rank and sparse decomposition (LSD) approaches have been widely used in this field, decomposing pathological images into (1) low-rank components as recovered images, and (2) sparse components as pathological segmentation. However, conventional LSD approaches often fail to produce recovered images reliably, due to the lack of constraint between low-rank and sparse components. To tackle this problem, we propose a transformed low-rank and structured sparse decomposition (TLS2D) method. The proposed TLS2D integrates the structured sparse constraint, LSD and image alignment into a unified scheme, which is robust for distinguishing pathological regions. Furthermore, the well recovered images can be obtained using TLS2D with the combined structured sparse and computed image saliency as the adaptive sparsity constraint. The efficacy of the proposed method is verified on synthetic and real MR brain tumor images. Experimental results demonstrate that our method can effectively provide satisfactory image recovery and tumor segmentation.

9.
Artículo en Inglés | MEDLINE | ID: mdl-28932758

RESUMEN

PURPOSE: To test and evaluate an efficient iterative image processing strategy to improve the quality of sub-optimal pre-clinical PET images. A novel iterative resolution subsets-based method to reduce noise and enhance resolution (RSEMD) has been demonstrated on examples of PET imaging studies of Alzheimer's disease (AD) plaques deposition in mice brains. MATERIALS AND METHODS: The RSEMD method was applied to imaging studies of non-invasive detection of beta-amyloid plaque in transgenic mouse models of AD. Data acquisition utilized a Siemens Inveon® micro PET/CT device. Quantitative uptake of the tracer in control and AD mice brains was determined by counting the extent of plaque deposition by histological staining. The pre-clinical imaging software inviCRO® was used for fitting the recovery PET images to the mouse brain atlas and obtaining the time activity curves (TAC) from different brain areas. RESULTS: In all of the AD studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional OSEM method. In general, the values of SNR reached a plateau at around 10 iterations with an improvement factor of about 2 over sub-optimal PET brain images. CONCLUSIONS: A rapidly converging, iterative deconvolution image processing algorithm with a resolution subsets-based approach RSEMD has been used for quantitative studies of changes in Alzheimer's pathology over time. The RSEMD method can be applied to sub-optimal clinical PET brain images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of AD progression at the earliest stages.

10.
Phys Med ; 31(8): 903-911, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26143585

RESUMEN

PURPOSE: To study the feasibility of using an iterative reconstruction algorithm to improve previously reconstructed CT images which are judged to be non-diagnostic on clinical review. A novel rapidly converging, iterative algorithm (RSEMD) to reduce noise as compared with standard filtered back-projection algorithm has been developed. MATERIALS AND METHODS: The RSEMD method was tested on in-silico, Catphan(®)500, and anthropomorphic 4D XCAT phantoms. The method was applied to noisy CT images previously reconstructed with FBP to determine improvements in SNR and CNR. To test the potential improvement in clinically relevant CT images, 4D XCAT phantom images were used to simulate a small, low contrast lesion placed in the liver. RESULTS: In all of the phantom studies the images proved to have higher resolution and lower noise as compared with images reconstructed by conventional FBP. In general, the values of SNR and CNR reached a plateau at around 20 iterations with an improvement factor of about 1.5 for in noisy CT images. Improvements in lesion conspicuity after the application of RSEMD have also been demonstrated. The results obtained with the RSEMD method are in agreement with other iterative algorithms employed either in image space or with hybrid reconstruction algorithms. CONCLUSIONS: In this proof of concept work, a rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach that operates on DICOM CT images has been demonstrated. The RSEMD method can be applied to sub-optimal routine-dose clinical CT images to improve image quality to potentially diagnostically acceptable levels.


Asunto(s)
Algoritmos , Tomografía Computarizada Cuatridimensional/instrumentación , Procesamiento de Imagen Asistido por Computador/instrumentación , Fantasmas de Imagen , Humanos , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA