Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(11): 2329-2344.e20, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37192618

RESUMEN

Enabling and constraining immune activation is of fundamental importance in maintaining cellular homeostasis. Depleting BAK1 and SERK4, the co-receptors of multiple pattern recognition receptors (PRRs), abolishes pattern-triggered immunity but triggers intracellular NOD-like receptor (NLR)-mediated autoimmunity with an elusive mechanism. By deploying RNAi-based genetic screens in Arabidopsis, we identified BAK-TO-LIFE 2 (BTL2), an uncharacterized receptor kinase, sensing BAK1/SERK4 integrity. BTL2 induces autoimmunity through activating Ca2+ channel CNGC20 in a kinase-dependent manner when BAK1/SERK4 are perturbed. To compensate for BAK1 deficiency, BTL2 complexes with multiple phytocytokine receptors, leading to potent phytocytokine responses mediated by helper NLR ADR1 family immune receptors, suggesting phytocytokine signaling as a molecular link connecting PRR- and NLR-mediated immunity. Remarkably, BAK1 constrains BTL2 activation via specific phosphorylation to maintain cellular integrity. Thus, BTL2 serves as a surveillance rheostat sensing the perturbation of BAK1/SERK4 immune co-receptors in promoting NLR-mediated phytocytokine signaling to ensure plant immunity.


Asunto(s)
Arabidopsis , Inmunidad de la Planta , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Reconocimiento de Patrones , Transducción de Señal
2.
Cell ; 184(15): 3981-3997.e22, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157301

RESUMEN

A fraction of mature T cells can be activated by peripheral self-antigens, potentially eliciting host autoimmunity. We investigated homeostatic control of self-activated T cells within unperturbed tissue environments by combining high-resolution multiplexed and volumetric imaging with computational modeling. In lymph nodes, self-activated T cells produced interleukin (IL)-2, which enhanced local regulatory T cell (Treg) proliferation and inhibitory functionality. The resulting micro-domains reciprocally constrained inputs required for damaging effector responses, including CD28 co-stimulation and IL-2 signaling, constituting a negative feedback circuit. Due to these local constraints, self-activated T cells underwent transient clonal expansion, followed by rapid death ("pruning"). Computational simulations and experimental manipulations revealed the feedback machinery's quantitative limits: modest reductions in Treg micro-domain density or functionality produced non-linear breakdowns in control, enabling self-activated T cells to subvert pruning. This fine-tuned, paracrine feedback process not only enforces immune homeostasis but also establishes a sharp boundary between autoimmune and host-protective T cell responses.


Asunto(s)
Retroalimentación Fisiológica , Homeostasis/inmunología , Activación de Linfocitos/inmunología , Linfocitos T Reguladores/inmunología , Animales , Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Interleucina-2/metabolismo , Microdominios de Membrana/metabolismo , Ratones Endogámicos C57BL , Modelos Inmunológicos , Comunicación Paracrina , Transducción de Señal
3.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38141610

RESUMEN

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Asunto(s)
Transducción de Señal , Tromboplastina , Animales , Ratones , Inflamación , Interferón-alfa , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Tromboplastina/genética
4.
Immunity ; 57(5): 1160-1176.e7, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697118

RESUMEN

Multimodal single-cell profiling methods can capture immune cell variations unfolding over time at the molecular, cellular, and population levels. Transforming these data into biological insights remains challenging. Here, we introduce a framework to integrate variations at the human population and single-cell levels in vaccination responses. Comparing responses following AS03-adjuvanted versus unadjuvanted influenza vaccines with CITE-seq revealed AS03-specific early (day 1) response phenotypes, including a B cell signature of elevated germinal center competition. A correlated network of cell-type-specific transcriptional states defined the baseline immune status associated with high antibody responders to the unadjuvanted vaccine. Certain innate subsets in the network appeared "naturally adjuvanted," with transcriptional states resembling those induced uniquely by AS03-adjuvanted vaccination. Consistently, CD14+ monocytes from high responders at baseline had elevated phospho-signaling responses to lipopolysaccharide stimulation. Our findings link baseline immune setpoints to early vaccine responses, with positive implications for adjuvant development and immune response engineering.


Asunto(s)
Linfocitos B , Vacunas contra la Influenza , Análisis de la Célula Individual , Humanos , Vacunas contra la Influenza/inmunología , Linfocitos B/inmunología , Centro Germinal/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Vacunación , Anticuerpos Antivirales/inmunología , Adyuvantes Inmunológicos , Adyuvantes de Vacunas , Monocitos/inmunología , Polisorbatos , Escualeno/inmunología , Inmunidad Innata/inmunología
5.
Cell ; 173(4): 906-919.e13, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29706547

RESUMEN

The innate RNA sensor RIG-I is critical in the initiation of antiviral type I interferons (IFNs) production upon recognition of "non-self" viral RNAs. Here, we identify a host-derived, IFN-inducible long noncoding RNA, lnc-Lsm3b, that can compete with viral RNAs in the binding of RIG-I monomers and feedback inactivate the RIG-I innate function at late stage of innate response. Mechanistically, binding of lnc-Lsm3b restricts RIG-I protein's conformational shift and prevents downstream signaling, thereby terminating type I IFNs production. Multivalent structural motifs and long-stem structure are critical features of lnc-Lsm3b for RIG-I binding and inhibition. These data reveal a non-canonical self-recognition mode in the regulation of immune response and demonstrate an important role of an inducible "self" lncRNA acting as a potent molecular decoy actively saturating RIG-I binding sites to restrict the duration of "non-self" RNA-induced innate immune response and maintaining immune homeostasis, with potential utility in inflammatory disease management.


Asunto(s)
Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , ARN Largo no Codificante/metabolismo , Animales , Células HEK293 , Humanos , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Células RAW 264.7 , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Vesiculovirus/patogenicidad
6.
Trends Immunol ; 44(10): 766-781, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37690962

RESUMEN

Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.


Asunto(s)
Antígenos , Linfocitos T Reguladores , Humanos , Antígenos/metabolismo
7.
Semin Immunol ; 52: 101476, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33906820

RESUMEN

The immune system mediates powerful effector mechanisms to protect against a diversity of pathogens and equally as important regulatory functions, to limit collateral damage of inflammation, prevent misguided immune responses to "self", and promote tissue repair. Inadequate regulatory control can lead to a variety of inflammatory disorders including autoimmunity, metabolic syndrome, allergies, and progression of malignancies. Cancers evolve complex mechanisms to thwart immune eradication including coopting normal host regulatory processes. This is most evident in the analysis of tumor infiltrating lymphocytes (TILs), where a preponderance of immunosuppressive immune cells, such as regulatory T (Treg) cells are found. Treg cells express the X-chromosome linked transcription factor Foxp3 and play a crucial role in maintaining immune homeostasis by suppressing inflammatory responses in diverse biological settings. Treg cells in the tumor microenvironment promote tumor development and progression by dampening anti-tumor immune responses, directly supporting the survival of transformed cells through elaboration of growth factors, and interacting with accessory cells in tumors such as fibroblasts and endothelial cells. Current insights into the phenotype and function of tumor associated Treg cells have opened up opportunities for their selective targeting in cancer with the goal of alleviating their suppression of anti-tumor immune responses while maintaining overall immune homeostasis. Here, we review Treg cell biology in the context of the tumor microenvironment (TME), and the important role they play in cancer immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Células Endoteliales , Humanos , Inmunoterapia , Microambiente Tumoral
8.
Infect Immun ; 92(7): e0004824, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38814083

RESUMEN

Commensal bacteria are crucial in maintaining host physiological homeostasis, immune system development, and protection against pathogens. Despite their significance, the factors influencing persistent bacterial colonization and their impact on the host still need to be fully understood. Animal models have served as valuable tools to investigate these interactions, but most have limitations. The bacterial genus Neisseria, which includes both commensal and pathogenic species, has been studied from a pathogenicity to humans perspective but lacks models that study immune responses in the context of long-term persistence. Neisseria musculi, a recently described natural commensal of mice, offers a unique opportunity to study long-term host-commensal interactions. In this study, for the first time, we have used this model to study the transcriptional, phenotypic, and functional dynamics of immune cell signatures in the mucosal and systemic tissue of mice in response to N. musculi colonization. We found key genes and pathways vital for immune homeostasis in palate tissue, validated by flow cytometry of immune cells from the lung, blood, and spleen. This study offers a novel avenue for advancing our understanding of host-bacteria dynamics and may provide a platform for developing efficacious interventions against mucosal persistence by pathogenic Neisseria.


Asunto(s)
Neisseria , Animales , Ratones , Neisseria/inmunología , Interacciones Huésped-Patógeno/inmunología , Femenino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Boca/microbiología , Boca/inmunología
9.
Infect Immun ; : e0017524, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007622

RESUMEN

Traditionally, eosinophils have been linked to parasitic infections and pathological disease states. However, emerging literature has unveiled a more nuanced and intricate role for these cells, demonstrating their key functions in maintaining mucosal homeostasis. Eosinophils exhibit diverse phenotypes and exert multifaceted effects during infections, ranging from promoting pathogen persistence to triggering allergic reactions. Our investigations primarily focus on Bordetella spp., with particular emphasis on Bordetella bronchiseptica, a natural murine pathogen that induces diseases in mice akin to pertussis in humans. Recent findings from our published work have unveiled a striking interaction between B. bronchiseptica and eosinophils, facilitated by the btrS-mediated mechanism. This interaction serves to enhance pathogen persistence while concurrently delaying adaptive immune responses. Notably, this role of eosinophils is only noted in the absence of a functional btrS signaling pathway, indicating that wild-type B. bronchiseptica, and possibly other Bordetella spp., possess such adeptness in manipulating eosinophils that the true function of these cells remains obscured during infection. In this review, we present the mounting evidence pointing toward eosinophils as targets of bacterial exploitation, facilitating pathogen persistence and fostering chronic infections in diverse mucosal sites, including the lungs, gut, and skin. We underscore the pivotal role of the master regulator of Bordetella pathogenesis, the sigma factor BtrS, in orchestrating eosinophil-dependent immunomodulation within the context of pulmonary infection. These putative convergent strategies of targeting eosinophils offer promising avenues for the development of novel therapeutics targeting respiratory and other mucosal pathogens.

10.
Eur J Immunol ; 53(11): e2350474, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37489253

RESUMEN

Kupffer cells (KCs) are liver-resident macrophages involved in hepatic inflammatory responses, including nonalcoholic fatty liver disease (NAFLD) development. However, the contribution of KC subsets to liver inflammation remains unclear. Here, using high-dimensional single-cell RNA sequencing, we characterized murine embryo-derived KCs and identified two KC populations with different gene expression profiles: KC-1 and KC-2. KC-1 expressed CD170, exhibiting immunoreactivity and immune-regulatory abilities, while KC-2 highly expressed lipid metabolism-associated genes. In a high-fat diet-induced NAFLD model, KC-1 cells differentiated into pro-inflammatory phenotypes and initiated more frequent communications with invariant natural killer T (iNKT) cells. In KC-1, interleukin (IL)-10 expression was unaffected by the high-fat diet but impaired by iNKT cell ablation and upregulated by iNKT cell adoptive transfer in vivo. Moreover, in a cellular co-culture system, primary hepatic iNKT cells promoted IL-10 expression in RAW264.7 and primary KC-1 cells. CD206 signal blocking in KC-1 or CD206 knockdown in RAW264.7 cells significantly reduced IL-10 expression. In conclusion, we identified two embryo-derived KC subpopulations with distinct transcriptional profiles. The CD206-mediated crosstalk between iNKT and KC-1 cells maintains IL-10 expression in KC-1 cells, affecting hepatic immune balance. Therefore, KC-based therapeutic strategies must consider cellular heterogeneity and the local immune microenvironment for enhanced specificity and efficiency.


Asunto(s)
Células T Asesinas Naturales , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Macrófagos del Hígado , Interleucina-10 , Hígado , Ratones Endogámicos C57BL
11.
Small ; : e2402146, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888130

RESUMEN

Acute lung injury (ALI) is the pathophysiological precursor of acute respiratory distress syndrome. It is characterized by increased oxidative stress and exaggerated inflammatory response that disrupts redox reactions and immune homeostasis in the lungs, thereby posing significant clinical challenges. In this study, an internally functionalized thioether-enriched dendrimer Sr-G4-PEG is developed, to scavenge both proinflammatory cytokines and reactive oxygen species (ROS) and restore homeostasis during ALI treatment. The dendrimers are synthesized using an efficient and orthogonal thiol-ene "click" chemistry approach that involves incorporating thioether moieties within the dendritic architectures to neutralize the ROS. The ROS scavenging of Sr-G4-PEG manifests in its capacity to sequester proinflammatory cytokines. The synergistic effects of scavenging ROS and sequestering inflammatory cytokines by Sr-G4-PEG contribute to redox remodeling and immune homeostasis, along with the modulation of the NLRP3-pyroptosis pathway. Treatment with Sr-G4-PEG enhances the therapeutic efficacy of ALIs by alleviating alveolar bleeding, reducing inflammatory cell infiltration, and suppressing the release of inflammatory cytokines. These results suggest that Sr-G4-PEG is a potent nanotechnological candidate for remodeling redox and immune homeostasis in the treatment of ALIs, demonstrating the great potential of dendrimer-based nanomedicine for the treatment of respiratory pathologies.

12.
Brain Behav Immun ; 116: 34-51, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38030048

RESUMEN

Changes in the intestinal microbiota have been observed in patients with anti-N-methyl-D-aspartate receptor encephalitis (NMDARE). However, whether and how the intestinal microbiota is involved in the pathogenesis of NMDARE susceptibility needs to be demonstrated. Here, we first showed that germ-free (GF) mice that underwent fecal microbiota transplantation (FMT) from NMDARE patients, whose fecal microbiota exhibited low short-chain fatty acid content, decreased abundance of Lachnospiraceae, and increased abundance of Verrucomicrobiota, Akkermansia, Parabacteroides, Oscillospirales, showed significant behavioral deficits. Then, these FMT mice were actively immunized with an amino terminal domain peptide from the GluN1 subunit (GluN1356-385) to mimic the pathogenic process of NMDARE. We found that FMT mice showed an increased susceptibility to an encephalitis-like phenotype characterized by more clinical symptoms, greater pentazole (PTZ)-induced susceptibility to seizures, and higher levels of T2 weighted image (T2WI) hyperintensities following immunization. Furthermore, mice with dysbiotic microbiota had impaired blood-brain barrier integrity and a proinflammatory condition. In NMDARE-microbiota recipient mice, the levels of Evan's blue (EB) dye extravasation increased, ZO-1 and claudin-5 expression decreased, and the levels of proinflammatory cytokines (IL-1, IL-6, IL-17, TNF-α and LPS) increased. Finally, significant brain inflammation, mainly in hippocampal and cortical regions, with modest neuroinflammation, immune cell infiltration, and reduced expression of NMDA receptors were observed in NMDARE microbiota recipient mice following immunization. Overall, our findings demonstrated that intestinal dysbiosis increased NMDARE susceptibility, suggesting a new target for limiting the occurrence of the severe phenotype of NMDARE.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato , Humanos , Ratones , Animales , Barrera Hematoencefálica , Disbiosis , Homeostasis , Permeabilidad
13.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 634-644, 2024 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-38511207

RESUMEN

The deoxynivalenol (DON)-contaminated feeds can impair chicken gut barrier function, disturb the balance of the intestinal microbiota, decrease chicken growth performance and cause major economic loss. With the aim of investigating the ameliorating effects of baicalin on broiler intestinal barrier damage and gut microbiota dysbiosis induced by DON, a total of 150 Arbor Acres broilers are used in the present study. The morphological damage to the duodenum, jejunum, and ileum caused by DON is reversed by treatment with different doses of baicalin, and the expression of tight junction proteins (ZO-1, claudin-1, and occludin) is also significantly increased in the baicalin-treated groups. Moreover, the disturbance of the intestinal microbiota caused by DON-contaminated feed is altered by baicalin treatment. In particular, compared with those in the DON group, the relative abundances of Lactobacillus, Lachnoclostridium, Ruminiclostridium and other beneficial microbes in the baicalin-treated groups are significantly greater. However, the percentage of unclassified_f__Lachnospiraceae in the baicalin-treated groups is significantly decreased in the DON group. Overall, the current results demonstrate that different doses of baicalin can improve broiler intestinal barrier function and the ameliorating effects on broiler intestinal barrier damage may be related to modulations of the intestinal microbiota.


Asunto(s)
Flavonoides , Microbioma Gastrointestinal , Tricotecenos , Animales , Pollos , Tricotecenos/metabolismo , Tricotecenos/farmacología , Yeyuno/metabolismo , Alimentación Animal/análisis
14.
Eur J Neurosci ; 58(11): 4269-4281, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37857561

RESUMEN

Stroke is a leading cause of mortality and disability. It occurs when cerebral blood flow is disrupted via vascular occlusion or rupture, causing tissue damage. Research has extensively examined the role of the immune response in stroke pathophysiology, focusing on infiltrated immune cells and inflammatory molecules. However, the stroke's impact on immune physiology remains underexplored. While initially stroke triggers the activation of peripheral inflammation, a subsequent profound immunosuppression occurs in a matter of hours/days. This response, potentially shielding the brain from excessive inflammation, significantly affects stroke patients. Beyond rendering patients more susceptible to infections, immunosuppression generates diverse consequences by disrupting immune system functions that are crucial for organ homeostasis. This review explores the effects of immunosuppression on stroke patients, shedding light on potential issues in immune organs such as the spleen and bone marrow, as well as non-immune organs like the small intestine, liver and heart. By synthesizing existing literature and offering additional insights, this manuscript highlights the multifaceted impact of post-stroke immunosuppression.


Asunto(s)
Accidente Cerebrovascular , Humanos , Encéfalo , Terapia de Inmunosupresión , Sistema Inmunológico , Inflamación
15.
Eur J Immunol ; 52(9): 1498-1509, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35581932

RESUMEN

Compared to αßT cells, γδT cells are more innate-like and preferentially function as the first line of defense in barrier tissues. Certain populations of γδT cells possess adaptive immune cell properties but their regulation is not well understood. We herein report that while innate-like γδT17 cells dominated in the skin of WT mice, Vγ1.1+ γδT cells with adaptive T cell-like properties predominantly expanded in the skin of TCRß-/- and B2m-/- mice. Commensal bacteria drove expansion of Vγ1.1+ skin γδT cells, functional properties of which correlated with local immune requirements. That is, Vγ1.1+ skin γδT cells in TCRß-/- mice were a heterogeneous population; while Vγ1.1+ skin γδT cells in B2m-/- mice were mostly CD8+ CD86+ cells that had a similar function of CD8+ CD86+ skin αßT cells in supporting local Treg cells. We also found that intrinsic TGF-ß receptor 2-derived signals in skin CD8+ αßT and γδT cells are required for their expression of CD86, a molecule important in supporting skin Treg cells. Our findings reveal broad functional potentials of γδT cells that are coordinately regulated with αßT cells to help maintain local tissue homeostasis.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Subgrupos de Linfocitos T , Animales , Antígeno B7-2/metabolismo , Linfocitos T CD8-positivos , Homeostasis , Ratones , Ratones Endogámicos C57BL , Piel
16.
Eur J Immunol ; 52(12): 1934-1945, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36155909

RESUMEN

Innate immunity is the first and essential line for resisting pathogens, and the immune intensity and duration need to be strictly regulated to balance excessive or insufficient immune response. MicroRNAs (miRNAs) are crucial regulators of immune response in Drosophila, yet how immune-related miRNAs are regulated remains poorly understood. Herein, we elucidated that the involvement of miR-317 in NF-κB transcription factor Relish mediated Drosophila Imd pathway in response to Gram-negative (G-) bacteria stimulation. Remarkably, the dynamic expression profiling for immune response indicated that Relish simultaneously enhances the expression of the effector antimicrobial peptide Dpt as well as miR-317 post-infection. Upregulation of miR-317 could further down-regulate the expression of PGRP-LC, thereby forming a feedback in Drosophila Imd pathway to prevent over-activation and restore immune homeostasis. Taken together, our study not only uncovers a novel Relish/miR-317/PGRP-LC regulatory axis to attenuate Drosophila Imd immune response and facilitate immune homeostasis restoration, but also provides vital insights into the complex mechanisms of animal innate immune regulation.


Asunto(s)
MicroARNs , Animales , MicroARNs/genética , Drosophila
17.
Cancer Immunol Immunother ; 72(8): 2549-2556, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37060364

RESUMEN

Beta-2-adrenergic receptor (ß2-AR) mediates neural signaling from the sympathetic nervous system (SNS) to the immune system to modulate immunogenic and immunosuppressive responses for maintaining immune homeostasis. ß2-AR regulates various cellular activities on the innate and adaptive immune cells through differential signaling to modulate activation, proliferation, differentiation, and cytokine production. This signaling pathway has been found to be critical for regulating anti-tumor immune responses and autoimmune responses. Recently, ß2-AR has also been implicated in the mobilization of immune cells in peripheral blood and ex-vivo expansion of cytotoxic T cells from donor blood that has clinical implications for improving cancer immunotherapy. This review attempts to provide a comprehensive overview of the established and emerging roles of ß2-AR signaling in immune homeostasis, cancer immunotherapy, and autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Adrenérgicos , Transducción de Señal , Enfermedades Autoinmunes/terapia , Inmunoterapia , Homeostasis , Neoplasias/terapia
18.
Proc Natl Acad Sci U S A ; 117(36): 22367-22377, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32848068

RESUMEN

The γδ T cells reside predominantly at barrier sites and play essential roles in immune protection against infection and cancer. Despite recent advances in the development of γδ T cell immunotherapy, our understanding of the basic biology of these cells, including how their numbers are regulated in vivo, remains poor. This is particularly true for tissue-resident γδ T cells. We have identified the ß2 family of integrins as regulators of γδ T cells. ß2-integrin-deficient mice displayed a striking increase in numbers of IL-17-producing Vγ6Vδ1+ γδ T cells in the lungs, uterus, and circulation. Thymic development of this population was normal. However, single-cell RNA sequencing revealed the enrichment of genes associated with T cell survival and proliferation specifically in ß2-integrin-deficient IL-17+ cells compared to their wild-type counterparts. Indeed, ß2-integrin-deficient Vγ6+ cells from the lungs showed reduced apoptosis ex vivo, suggesting that increased survival contributes to the accumulation of these cells in ß2-integrin-deficient tissues. Furthermore, our data revealed an unexpected role for ß2 integrins in promoting the thymic development of the IFNγ-producing CD27+ Vγ4+ γδ T cell subset. Together, our data reveal that ß2 integrins are important regulators of γδ T cell homeostasis, inhibiting the survival of IL-17-producing Vγ6Vδ1+ cells and promoting the thymic development of the IFNγ-producing Vγ4+ subset. Our study introduces unprecedented mechanisms of control for γδ T cell subsets.


Asunto(s)
Antígenos CD18 , Linfocitos Intraepiteliales , Timo , Animales , Antígenos CD18/genética , Antígenos CD18/inmunología , Antígenos CD18/metabolismo , Homeostasis/inmunología , Interleucina-17/genética , Interleucina-17/inmunología , Interleucina-17/metabolismo , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Linfocitos Intraepiteliales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Timo/crecimiento & desarrollo , Timo/inmunología , Timo/metabolismo
19.
Ren Fail ; 45(1): 2187229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36883358

RESUMEN

OBJECTIVE: The present study investigated the specific mechanism by which mesenchymal stem cells (MSCs) protect against sepsis-associated acute kidney injury (SA-AKI). METHODS: Male C57BL/6 mice underwent cecal ligation and puncture surgery to induce sepsis and then received either normal IgG or MSCs (1 × 106 cells, intravenously) plus Gal-9 or soluble Tim-3 3 h after surgery. RESULTS: After cecal ligation and puncture surgery, the mice injected with Gal-9 or MSCs plus Gal-9 had a higher survival rate than the mice in the IgG treatment group. Treatment with MSCs plus Gal-9 decreased serum creatinine and blood urea nitrogen levels, improved tubular function recovery, reduced IL-17 and RORγt levels and induced IL-10 and FOXP3 expression. Additionally, the Th17/Treg cell balance was altered. However, when soluble Tim-3 was used to block the Gal-9/Tim-3 pathway, the septic mice developed kidney injury and exhibited increased mortality. Treatment with MSCs plus soluble Tim-3 blunted the therapeutic effect of MSCs, inhibited the induction of Tregs, and suppressed the inhibition of differentiation into Th17 cells. CONCLUSION: Treatment with MSCs significantly reversed the Th1/Th2 balance. Thus, the Gal-9/Tim-3 pathway may be an important mechanism of MSC-mediated protection against SA-AKI.


Asunto(s)
Lesión Renal Aguda , Homeostasis , Células Madre Mesenquimatosas , Sepsis , Animales , Masculino , Ratones , Lesión Renal Aguda/etiología , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/prevención & control , Lesión Renal Aguda/terapia , Receptor 2 Celular del Virus de la Hepatitis A , Homeostasis/inmunología , Inmunoglobulina G/uso terapéutico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/inmunología , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Sepsis/complicaciones , Sepsis/inmunología
20.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37445774

RESUMEN

Repetitive low-level blast (rLLB) exposure is a potential risk factor for the health of soldiers or workers who are exposed to it as an occupational characteristic. Alveolar macrophages (AMs) are susceptible to external blast waves and produce pro-inflammatory or anti-inflammatory effects. However, the effect of rLLB exposure on AMs is still unclear. Here, we generated rLLB waves through a miniature manual Reddy-tube and explored their effects on MH-S cell morphology, phenotype transformation, oxidative stress status, and apoptosis by immunofluorescence, real-time quantitative PCR (qPCR), western blotting (WB) and flow cytometry. Ipatasertib (GDC-0068) or PDTC was used to verify the role of the Akt/NF-κB signaling pathway in these processes. Results showed that rLLB treatment could cause morphological irregularities and cytoskeletal disorders in MH-S cells and promote their polarization to the M1 phenotype by increasing iNOS, CD86 and IL-6 expression. The molecular mechanism is through the Akt/NF-κB signaling pathway. Moreover, we found reactive oxygen species (ROS) burst, Ca2+ accumulation, mitochondrial membrane potential reduction, and early apoptosis of MH-S cells. Taken together, our findings suggest rLLB exposure may cause M1 polarization and early apoptosis of AMs. Fortunately, it is blocked by specific inhibitors GDC-0068 or PDTC. This study provides a new treatment strategy for preventing and alleviating health damage in the occupational population caused by rLLB exposure.


Asunto(s)
Macrófagos Alveolares , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Macrófagos Alveolares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA