Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cerebellum ; 23(2): 838-855, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36991252

RESUMEN

Immune-mediated cerebellar ataxias (IMCAs) have diverse etiologies. Patients with IMCAs develop cerebellar symptoms, characterized mainly by gait ataxia, showing an acute or subacute clinical course. We present a novel concept of latent autoimmune cerebellar ataxia (LACA), analogous to latent autoimmune diabetes in adults (LADA). LADA is a slowly progressive form of autoimmune diabetes where patients are often initially diagnosed with type 2 diabetes. The sole biomarker (serum anti-GAD antibody) is not always present or can fluctuate. However, the disease progresses to pancreatic beta-cell failure and insulin dependency within about 5 years. Due to the unclear autoimmune profile, clinicians often struggle to reach an early diagnosis during the period when insulin production is not severely compromised. LACA is also characterized by a slowly progressive course, lack of obvious autoimmune background, and difficulties in reaching a diagnosis in the absence of clear markers for IMCAs. The authors discuss two aspects of LACA: (1) the not manifestly evident autoimmunity and (2) the prodromal stage of IMCA's characterized by a period of partial neuronal dysfunction where non-specific symptoms may occur. In order to achieve an early intervention and prevent cell death in the cerebellum, identification of the time-window before irreversible neuronal loss is critical. LACA occurs during this time-window when possible preservation of neural plasticity exists. Efforts should be devoted to the early identification of biological, neurophysiological, neuropsychological, morphological (brain morphometry), and multimodal biomarkers allowing early diagnosis and therapeutic intervention and to avoid irreversible neuronal loss.


Asunto(s)
Ataxia Cerebelosa , Diabetes Mellitus Tipo 2 , Insulinas , Adulto , Humanos , Ataxia Cerebelosa/terapia , Consenso , Cerebelo , Autoanticuerpos
2.
Cerebellum ; 22(1): 129-147, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35064896

RESUMEN

The presence of auto-antibodies that target synaptic machinery proteins was documented recently in immune-mediated cerebellar ataxias. The autoantigens include glutamic acid decarboxylase 65 (GAD65), voltage-gated Ca2+ channel (VGCC), metabotropic glutamate receptor type 1 (mGluR1), and glutamate receptor delta (GluRdelta). GAD65 is involved in the synthesis, packaging, and release of GABA, whereas the other three play important roles in the induction of long-term depression (LTD). Thus, the auto-antibodies toward these synaptic molecules likely impair fundamental synaptic machineries involved in unique functions of the cerebellum, potentially leading to the development of cerebellar ataxias (CAs). This concept has been substantiated recently by a series of physiological studies. Anti-GAD65 antibody (Ab) acts on the terminals of inhibitory neurons that suppress GABA release, whereas anti-VGCC, anti-mGluR1, and anti-GluR Abs impair LTD induction. Notably, the mechanisms that link synaptic dysfunction with the manifestations of CAs can be explained by disruption of the "internal models." The latter can be divided into three levels. First, since chained inhibitory neurons shape the output signals through the mechanism of disinhibition/inhibition, impairments of GABA release and LTD distort the conversion process from the "internal model" to the output signals. Second, these antibodies impair the induction of synaptic plasticity, rebound potentiation, and LTD, on Purkinje cells, resulting in loss of restoration and compensation of the distorted "internal models." Finally, the cross-talk between glutamate and microglia/astrocytes could involve a positive feedback loop that accelerates excitotoxicity. This mini-review summarizes the pathophysiological mechanisms and aims to establish the basis of "auto-antibody-induced cerebellar synaptopathies."


Asunto(s)
Ataxia Cerebelosa , Humanos , Cerebelo , Células de Purkinje/fisiología , Neuronas , Ácido gamma-Aminobutírico
3.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668612

RESUMEN

In the last years, different kinds of limbic encephalitis associated with autoantibodies against ion channels and synaptic receptors have been described. Many studies have demonstrated that such autoantibodies induce channel or receptor dysfunction. The same mechanism is discussed in immune-mediated cerebellar ataxias (IMCAs), but the pathogenesis has been less investigated. The aim of the present review is to evaluate what kind of cerebellar ion channels, their related proteins, and the synaptic machinery proteins that are preferably impaired by autoantibodies so as to develop cerebellar ataxias (CAs). The cerebellum predictively coordinates motor and cognitive functions through a continuous update of an internal model. These controls are relayed by cerebellum-specific functions such as precise neuronal discharges with potassium channels, synaptic plasticity through calcium signaling pathways coupled with voltage-gated calcium channels (VGCC) and metabotropic glutamate receptors 1 (mGluR1), a synaptic organization with glutamate receptor delta (GluRδ), and output signal formation through chained GABAergic neurons. Consistently, the association of CAs with anti-potassium channel-related proteins, anti-VGCC, anti-mGluR1, and GluRδ, and anti-glutamate decarboxylase 65 antibodies is observed in IMCAs. Despite ample distributions of AMPA and GABA receptors, however, CAs are rare in conditions with autoantibodies against these receptors. Notably, when the autoantibodies impair synaptic transmission, the autoimmune targets are commonly classified into three categories: release machinery proteins, synaptic adhesion molecules, and receptors. This physiopathological categorization impacts on both our understanding of the pathophysiology and clinical prognosis.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Ataxia Cerebelosa/inmunología , Canales Iónicos/inmunología , Proteínas del Tejido Nervioso/inmunología , Sinapsis/inmunología , Animales , Reacciones Antígeno-Anticuerpo , Autoantígenos/metabolismo , Enfermedades Autoinmunes del Sistema Nervioso/metabolismo , Ataxia Cerebelosa/metabolismo , Cerebelo/metabolismo , Humanos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal , Neurotransmisores/metabolismo , Transporte de Proteínas , Células de Purkinje/metabolismo , Sinapsis/metabolismo
4.
J Neurol ; 271(10): 7046-7053, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39052041

RESUMEN

Immune-mediated cerebellar ataxias (IMCAs) represent a group of disorders in which the immune system targets mainly the cerebellum and related structures. We address fundamental questions on the diagnosis and immunological pathogenesis of IMCAs, as illuminated by recent advances in the field. Various types of IMCAs have been identified, including post-infectious cerebellitis, Miller Fisher syndrome, gluten ataxia, paraneoplastic cerebellar degeneration (PCD), opsoclonus and myoclonus syndrome, and anti-GAD ataxia. In some cases, identification of several well-characterized autoantibodies points to a specific etiology in IMCAs and leads to a firm diagnosis. In other cases, various autoantibodies have been reported, but their interpretation requires a careful consideration. Indeed, some autoantibodies have only been documented in a limited number of cases and the causal relationship is not established. In order to facilitate an early treatment and prevent irreversible lesions, new entities have been defined in recent years, such as primary autoimmune cerebellar ataxia (PACA) and latent autoimmune cerebellar ataxia (LACA). PACA is characterized by autoimmune features which do not align with traditional etiologies, while LACA corresponds to a prodromal stage. LACA does not imply the initiation of an immunotherapy but requires a close follow-up. Concurrently, accumulation of clinical data has led to intriguing hypotheses regarding the mechanisms of autoimmunity, such as a pathogenesis of autoimmunity against synapses (synaptopathies), and the vulnerability of the entire nervous system when the immunity targets ion channels and astrocytes. The development of PCD in patients treated with immune-checkpoint inhibitors suggests that molecular mimicry specifically determines the direction of autoimmunity, and that the strength of this response is modulated by co-signaling molecules that either enhance or dampen signals from the antigen-specific T cell receptor.


Asunto(s)
Ataxia Cerebelosa , Humanos , Ataxia Cerebelosa/inmunología , Ataxia Cerebelosa/diagnóstico , Autoanticuerpos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/diagnóstico
5.
Parkinsonism Relat Disord ; 117: 105861, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37748994

RESUMEN

Immune-mediated cerebellar ataxias were initially described as a clinical entity in the 1980s, and since then, an expanding body of evidence has contributed to our understanding of this topic. These ataxias encompass various etiologies, including postinfectious cerebellar ataxia, gluten ataxia, paraneoplastic cerebellar degeneration, opsoclonus-myoclonus-ataxia syndrome and primary autoimmune cerebellar ataxia. The increased permeability of the brain-blood barrier could potentially explain the vulnerability of the cerebellum to autoimmune processes. In this manuscript, our objective is to provide a comprehensive review of the most prevalent diseases within this group, emphasizing clinical indicators, pathogenesis, and current treatment approaches.


Asunto(s)
Ataxia Cerebelosa , Síndrome de Opsoclonía-Mioclonía , Humanos , Ataxia Cerebelosa/etiología , Ataxia Cerebelosa/patología , Ataxia/diagnóstico , Ataxia/etiología , Cerebelo/patología , Síndrome de Opsoclonía-Mioclonía/patología
6.
Brain Sci ; 12(9)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36138901

RESUMEN

The cerebellum is particularly enriched in antigens and represents a vulnerable target to immune attacks. Immune-mediated cerebellar ataxias (IMCAs) have diverse etiologies, such as gluten ataxia (GA), post-infectious cerebellitis (PIC), Miller Fisher syndrome (MFS), paraneoplastic cerebellar degeneration (PCD), opsoclonus myoclonus syndrome (OMS), and anti-GAD ataxia. Apart from these well-established entities, cerebellar ataxia (CA) occurs also in association with autoimmunity against ion channels and related proteins, synaptic adhesion/organizing proteins, transmitter receptors, glial cells, as well as the brainstem antigens. Most of these conditions manifest diverse neurological clinical features, with CAs being one of the main clinical phenotypes. The term primary autoimmune cerebellar ataxia (PACA) refers to ataxic conditions suspected to be autoimmune even in the absence of specific well-characterized pathogenic antibody markers. We review advances in the field of IMCAs and propose a clinical approach for the understanding and diagnosis of IMCAs, focusing on rare etiologies which are likely underdiagnosed. The frontiers of PACA are discussed. The identification of rare immune ataxias is of importance since they are potentially treatable and may lead to a severe clinical syndrome in absence of early therapy.

7.
Brain Sci ; 12(3)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35326260

RESUMEN

Long-term depression at parallel fibers-Purkinje cells (PF-PC LTD) is essential for cerebellar motor learning and motor control. Recent progress in ataxiology has identified dysregulation of PF-PC LTD in the pathophysiology of certain types of immune-mediated cerebellar ataxias (IMCAs). Auto-antibodies towards voltage-gated Ca channel (VGCC), metabotropic glutamate receptor type 1 (mGluR1), and glutamate receptor delta (GluR delta) induce dysfunction of PF-PC LTD, resulting in the development of cerebellar ataxias (CAs). These disorders show a good response to immunotherapies in non-paraneoplastic conditions but are sometimes followed by cell death in paraneoplastic conditions. On the other hand, in some types of spinocerebellar ataxia (SCA), dysfunction in PF-PC LTD, and impairments of PF-PC LTD-related adaptive behaviors (including vestibulo-ocular reflex (VOR) and prism adaptation) appear during the prodromal stage, well before the manifestations of obvious CAs and cerebellar atrophy. Based on these findings and taking into account the findings of animal studies, we re-assessed the clinical concept of LTDpathy. LTDpathy can be defined as a clinical spectrum comprising etiologies associated with a functional disturbance of PF-PC LTD with concomitant impairment of related adaptative behaviors, including VOR, blink reflex, and prism adaptation. In IMCAs or degenerative CAs characterized by persistent impairment of a wide range of molecular mechanisms, these disorders are initially functional and are followed subsequently by degenerative cell processes. In such cases, adaptive disorders associated with PF-PC LTD manifest clinically with subtle symptoms and can be prodromal. Our hypothesis underlines for the first time a potential role of LTD dysfunction in the pathogenesis of the prodromal symptoms of CAs. This hypothesis opens perspectives to block the course of CAs at a very early stage.

8.
Cerebellum Ataxias ; 8(1): 16, 2021 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-34120658

RESUMEN

BACKGROUND: Most immune-mediated cerebellar ataxias, including those associated with gluten sensitivity (Gluten Ataxia), tend to present subacutely and usually progress gradually. Acute presentations with rapid progression outside the context of paraneoplastic cerebellar degeneration require prompt diagnosis and early access to disease-modifying immunotherapy in order to avert severe and permanent neurological disability. CASE PRESENTATIONS: We describe three cases of rapid-onset Gluten Ataxia, an immune-mediated cerebellar ataxia due to gluten sensitivity. We detail their presentation, clinical and neuroimaging findings, and our treatment strategy with immunotherapy. CONCLUSIONS: Our cases highlight the potential for immune-mediated cerebellar ataxias to present acutely, with rapid-onset symptoms and devastating neurological consequences. We caution against the diagnosis of 'post-infective cerebellitis' in adults, and advocate early consideration of an immune-mediated cerebellar ataxia and initiation of immunotherapy to prevent irreversible cerebellar damage.

9.
Brain Sci ; 11(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34827413

RESUMEN

Purpose of review: To provide an update on paraneoplastic cerebellar degeneration (PCD), the involved antibodies and tumors, as well as management strategies. Recent findings: PCD represents the second most common presentation of the recently established class of immune mediated cerebellar ataxias (IMCAs). Although rare in general, PCD is one of the most frequent paraneoplastic presentations and characterized clinically by a rapidly progressive cerebellar syndrome. In recent years, several antibodies have been described in association with the clinical syndrome related to PCD; their clinical significance, however, has yet to be determined. The 2021 updated diagnostic criteria for paraneoplastic neurologic symptoms help to establish the diagnosis of PCD, direct cancer screening, and to evaluate the presence of these newly identified antibodies. Recognition of the clinical syndrome and prompt identification of a specific antibody are essential for early detection of an underlying malignancy and initiation of an appropriate treatment, which represents the best opportunity to modulate the course of the disease. As clinical symptoms can precede tumor diagnosis by years, co-occurrence of specific symptoms and antibodies should prompt continuous surveillance of the patient. Summary: We provide an in-depth overview on PCD, summarize recent findings related to PCD, and highlight the transformed diagnostic approach.

10.
J Mov Disord ; 14(1): 10-28, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33423437

RESUMEN

Since the first description of immune-mediated cerebellar ataxias (IMCAs) by Charcot in 1868, several milestones have been reached in our understanding of this group of neurological disorders. IMCAs have diverse etiologies, such as gluten ataxia, postinfectious cerebellitis, paraneoplastic cerebellar degeneration, opsoclonus myoclonus syndrome, anti-GAD ataxia, and primary autoimmune cerebellar ataxia. The cerebellum, a vulnerable autoimmune target of the nervous system, has remarkable capacities (collectively known as the cerebellar reserve, closely linked to plasticity) to compensate and restore function following various pathological insults. Therefore, good prognosis is expected when immune-mediated therapeutic interventions are delivered during early stages when the cerebellar reserve can be preserved. However, some types of IMCAs show poor responses to immunotherapies, even if such therapies are introduced at an early stage. Thus, further research is needed to enhance our understanding of the autoimmune mechanisms underlying IMCAs, as such research could potentially lead to the development of more effective immunotherapies. We underscore the need to pursue the identification of robust biomarkers.

11.
Mol Biomed ; 2(1): 2, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35006439

RESUMEN

There is general agreement that auto-antibodies against ion channels and synaptic machinery proteins can induce limbic encephalitis. In immune-mediated cerebellar ataxias (IMCAs), various synaptic proteins, such as GAD65, voltage-gated Ca channel (VGCC), metabotropic glutamate receptor type 1 (mGluR1), and glutamate receptor delta (GluR delta) are auto-immune targets. Among them, the pathophysiological mechanisms underlying anti-VGCC, anti-mGluR1, and anti-GluR delta antibodies remain unclear. Despite divergent auto-immune and clinical profiles, these subtypes show common clinical features of good prognosis with no or mild cerebellar atrophy in non-paraneoplastic syndrome. The favorable prognosis reflects functional cerebellar disorders without neuronal death. Interestingly, these autoantigens are all involved in molecular cascades for induction of long-term depression (LTD) of synaptic transmissions between parallel fibers (PFs) and Purkinje cells (PCs), a crucial mechanism of synaptic plasticity in the cerebellum. We suggest that anti-VGCC, anti-mGluR1, and anti-GluR delta Abs-associated cerebellar ataxias share one common pathophysiological mechanism: a deregulation in PF-PC LTD, which results in impairment of restoration or maintenance of the internal model and triggers cerebellar ataxias. The novel concept of LTDpathies could lead to improvements in clinical management and treatment of cerebellar patients who show these antibodies.

12.
Curr Neuropharmacol ; 17(1): 33-58, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30221603

RESUMEN

Immune-mediated cerebellar ataxias (IMCAs), a clinical entity reported for the first time in the 1980s, include gluten ataxia (GA), paraneoplastic cerebellar degenerations (PCDs), antiglutamate decarboxylase 65 (GAD) antibody-associated cerebellar ataxia, post-infectious cerebellitis, and opsoclonus myoclonus syndrome (OMS). These IMCAs share common features with regard to therapeutic approaches. When certain factors trigger immune processes, elimination of the antigen( s) becomes a priority: e.g., gluten-free diet in GA and surgical excision of the primary tumor in PCDs. Furthermore, various immunotherapeutic modalities (e.g., steroids, immunoglobulins, plasmapheresis, immunosuppressants, rituximab) should be considered alone or in combination to prevent the progression of the IMCAs. There is no evidence of significant differences in terms of response and prognosis among the various types of immunotherapies. Treatment introduced at an early stage, when CAs or cerebellar atrophy is mild, is associated with better prognosis. Preservation of the "cerebellar reserve" is necessary for the improvement of CAs and resilience of the cerebellar networks. In this regard, we emphasize the therapeutic principle of "Time is Cerebellum" in IMCAs.


Asunto(s)
Enfermedades Autoinmunes/terapia , Ataxia Cerebelosa/inmunología , Ataxia Cerebelosa/terapia , Animales , Enfermedades Autoinmunes/diagnóstico , Enfermedades Autoinmunes/patología , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/patología , Cerebelo/inmunología , Cerebelo/patología , Progresión de la Enfermedad , Humanos , Guías de Práctica Clínica como Asunto
13.
Cerebellum Ataxias ; 4: 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28944066

RESUMEN

The cerebellum is a vulnerable target of autoimmunity in the CNS. The category of immune-mediated cerebellar ataxias (IMCAs) was recently established, and includes in particular paraneoplastic cerebellar degenerations (PCDs), gluten ataxia (GA) and anti-GAD65 antibody (Ab) associated-CA, all characterized by the presence of autoantibodies. The significance of onconeuronal autoantibodies remains uncertain in some cases. The pathogenic role of anti-GAD65Ab has been established both in vitro and in vivo, but a consensus has not been reached yet. Recent studies of anti-GAD65 Ab-associated CA have clarified that (1) autoantibodies are generally polyclonal and elicit pathogenic effects related to epitope specificity, and (2) the clinical course can be divided into two phases: a phase of functional disorder followed by cell death. These features provide the rationale for prompt diagnosis and therapeutic strategies. The concept "Time is brain" has been completely underestimated in the field of immune ataxias. We now put forward the concept "Time is cerebellum" to underline the importance of very early therapeutic strategies in order to prevent or stop the loss of neurons and synapses. The diagnosis of IMCAs should depend not only on Ab testing, but rather on a rapid and comprehensive assessment of the clinical/immune profile. Treatment should be applied during the period of preserved cerebellar reserve, and should encompass early removal of the conditions (such as remote primary tumors) or diseases that trigger the autoimmunity, followed by the combinations of various immunotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA