Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2211297120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36574664

RESUMEN

WD repeat domain 5 (WDR5) is a core scaffolding component of many multiprotein complexes that perform a variety of critical chromatin-centric processes in the nucleus. WDR5 is a component of the mixed lineage leukemia MLL/SET complex and localizes MYC to chromatin at tumor-critical target genes. As a part of these complexes, WDR5 plays a role in sustaining oncogenesis in a variety of human cancers that are often associated with poor prognoses. Thus, WDR5 has been recognized as an attractive therapeutic target for treating both solid and hematological tumors. Previously, small-molecule inhibitors of the WDR5-interaction (WIN) site and WDR5 degraders have demonstrated robust in vitro cellular efficacy in cancer cell lines and established the therapeutic potential of WDR5. However, these agents have not demonstrated significant in vivo efficacy at pharmacologically relevant doses by oral administration in animal disease models. We have discovered WDR5 WIN-site inhibitors that feature bicyclic heteroaryl P7 units through structure-based design and address the limitations of our previous series of small-molecule inhibitors. Importantly, our lead compounds exhibit enhanced on-target potency, excellent oral pharmacokinetic (PK) profiles, and potent dose-dependent in vivo efficacy in a mouse MV4:11 subcutaneous xenograft model by oral dosing. Furthermore, these in vivo probes show excellent tolerability under a repeated high-dose regimen in rodents to demonstrate the safety of the WDR5 WIN-site inhibition mechanism. Collectively, our results provide strong support for WDR5 WIN-site inhibitors to be utilized as potential anticancer therapeutics.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias , Repeticiones WD40 , Animales , Humanos , Ratones , Cromatina , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Animales , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral
2.
Skin Res Technol ; 30(3): e13647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38465749

RESUMEN

BACKGROUND: Current methods for evaluating efficacy of cosmetics have limitations because they cannot accurately measure changes in the dermis. Skin sampling using microneedles allows identification of skin-type biomarkers, monitoring treatment for skin inflammatory diseases, and evaluating efficacy of anti-aging and anti-pigmentation products. MATERIALS AND METHODS: Two studies were conducted: First, 20 participants received anti-aging treatment; second, 20 participants received anti-pigmentation treatment. Non-invasive devices measured skin aging (using high-resolution 3D-imaging in the anti-aging study) or pigmentation (using spectrophotometry in the anti-pigmentation study) at weeks 0 and 4, and adverse skin reactions were monitored. Skin samples were collected with biocompatible microneedle patches. Changes in expression of biomarkers for skin aging and pigmentation were analyzed using qRT-PCR. RESULTS: No adverse events were reported. In the anti-aging study, after 4 weeks, skin roughness significantly improved in 17 out of 20 participants. qRT-PCR showed significantly increased expression of skin-aging related biomarkers: PINK1 in 16/20 participants, COL1A1 in 17/20 participants, and MSN in 16/20 participants. In the anti-pigmentation study, after 4 weeks, skin lightness significantly improved in 16/20 participants. qRT-PCR showed significantly increased expression of skin-pigmentation-related biomarkers: SOD1 in 15/20 participants and Vitamin D Receptor (VDR) in 15/20 participants. No significant change in TFAP2A was observed. CONCLUSION: Skin sampling and mRNA analysis for biomarkers provides a novel, objective, quantitative method for measuring changes in the dermis and evaluating the efficacy of cosmetics. This approach complements existing evaluation methods and has potential application in assessing the effectiveness of medical devices, medications, cosmeceuticals, healthy foods, and beauty devices.


Asunto(s)
Cosméticos , Trastornos de la Pigmentación , Envejecimiento de la Piel , Humanos , Piel/diagnóstico por imagen , Pigmentación de la Piel , Biomarcadores
3.
Arch Pharm (Weinheim) ; : e202400202, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752780

RESUMEN

Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.

4.
AAPS PharmSciTech ; 25(4): 66, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519779

RESUMEN

Oral submucous fibrosis (OSF) is a chronic progressive disease associated with increased collagen deposition and TGF-ß1 release. The current therapy and management have been a limited success due to low efficacy and adverse drug reactions. This study aimed to evaluate epigallocatechin 3-gallate (EGCG) encapsulated nanoparticles loaded mucoadhesive hydrogel nanocomposite (HNC) for OSF. Developed HNC formulations were evaluated for their permeation behaviour using in vitro as well as ex vivo studies, followed by evaluation of efficacy and safety by in vivo studies using areca nut extract-induced OSF in rats. The disease condition in OSF-induced rats was assessed by mouth-opening and biochemical markers. The optimized polymeric nanoparticles exhibited the required particle size (162.93 ± 13.81 nm), positive zeta potential (22.50 ± 2.94 mV) with better mucoadhesive strength (0.40 ± 0.002 N), and faster permeation due to interactions of the positively charged surface with the negatively charged buccal mucosal membrane. HNC significantly improved disease conditions by reducing TGF-ß1 and collagen concentration without showing toxicity and reverting the fibroid buccal mucosa to normal. Hence, the optimized formulation can be further tested to develop a clinically alternate therapeutic strategy for OSF.


Asunto(s)
Catequina/análogos & derivados , Fibrosis de la Submucosa Bucal , Ratas , Animales , Fibrosis de la Submucosa Bucal/tratamiento farmacológico , Fibrosis de la Submucosa Bucal/inducido químicamente , Factor de Crecimiento Transformador beta1/efectos adversos , Hidrogeles , Mucosa Bucal , Colágeno
5.
J Med Virol ; 95(6): e28863, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37310127

RESUMEN

The ongoing COVID-19 has not only caused millions of deaths worldwide, but it has also led to economic recession and the collapse of public health systems. The vaccines and antivirals developed in response to the pandemic have improved the situation markedly; however, the pandemic is still not under control with recurring surges. Thus, it is still necessary to develop therapeutic agents. In our previous studies, we designed and synthesized a series of novel 2-anilinoquinazolin-4(3H)-one derivatives, and demonstrated inhibitory activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and MERS-CoV in vitro. We then conducted in vivo studies using modified compounds that are suitable for oral administration. These compounds demonstrated no toxicity in rats and inhibited viral entry. Here, we investigated the in vivo efficacy of these drug candidates against SARS-CoV-2. Three candidate drugs, 7-chloro-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one (1), N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-dichlorophenyl)acetamide (2), and N-(7-chloro-4-oxo-3,4-dihydroquinazolin-2-yl)-N-(3,5-difluorophenyl)acetamide (3) were administered orally to hACE2 transgenic mice at a dose of 100 mg/kg. All three drugs improved survival rate and reduced the viral load in the lungs. These results show that the derivatives possess in vivo antiviral efficacy similar to that of molnupiravir, which is currently being used to treat COVID-19. Overall, our data suggest that 2-anilinoquinazolin-4(3H)-one derivatives are promising as potential oral antiviral drug candidates against SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , SARS-CoV-2 , Animales , Humanos , Ratones , Ratas , Acetamidas , Enzima Convertidora de Angiotensina 2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/terapia , Modelos Animales de Enfermedad , Ratones Transgénicos , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , SARS-CoV-2/genética
6.
Mol Pharm ; 20(7): 3570-3577, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37307328

RESUMEN

Selective delivery of chemotherapy to the tumor site while sparing healthy cells and tissues is an attractive approach for cancer treatment. Carriers such as peptides can facilitate selective tumor targeting and payload delivery. Peptides with specific affinity for the overexpressed cell-surface receptors in cancer cells are conjugated to chemotherapy to afford peptide-drug conjugates (PDCs) that show selective uptake by cancer cells. Using a 10-mer linear peptide (WxEAAYQrFL) called 18-4 that targets and binds breast cancer cells, we designed a peptide 18-4-doxorubicin (Dox) conjugate with high specific toxicity toward triple-negative breast cancer (TNBC) MDA-MB-231 cells and 30-fold lower toxicity to normal breast MCF10A epithelial cells. Here, we elucidate the in vivo activity of this potent and tumor-selective peptide 18-4-Dox conjugate in mice bearing orthotopic MDA-MB-231 tumors. Mice treated with four weekly injections of the conjugate showed significantly lower tumor volumes compared to mice treated with free Dox at an equivalent Dox dose. Immunohistochemical (IHC) analysis of mice tissues revealed that treatment with a low dose of PDC (2.5 mg/kg of Dox equiv) reduced the expression of proliferation markers (PCNA and Ki-67) and increased apoptosis (evidenced by increased caspase-3 expression). At the same dose of free Dox (2.5 mg/kg), the expression of these markers was similar to that of saline treatment. Accordingly, significantly more Dox accumulated in tumors of conjugate-treated mice (7-fold) compared to the Dox-treated mice, while lower levels of Dox were observed in the liver, heart, and lungs of peptide-Dox conjugate-treated mice (up to 3-fold less) than Dox-treated mice. The IHC analysis of keratin 1 (K1), the receptor for peptide 18-4, revealed K1 upregulation in tumors and low levels in normal mammary fat pad and liver tissues from mice, suggesting preferential uptake of PDCs by TNBC to be K1 receptor-mediated. Taken together, our data support the use of a PDC approach to deliver chemotherapy selectively to the TNBC to inhibit tumor growth.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Femenino , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Queratina-1 , Sistemas de Liberación de Medicamentos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Péptidos/uso terapéutico , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico
7.
Bioorg Med Chem Lett ; 93: 129425, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37557926

RESUMEN

This work describes about the synthesis and evaluation of substituted benzofuran piperazines as potential anticancer agents. The synthesized candidates have been evaluated for their cell proliferation inhibition properties in six murine and human cancer cell lines. In vitro evaluation of apoptosis and cell cycle analysis with the lead candidate 1.19 reveals that necrosis might be an important pathway for the candidate compounds to cause cell death. Further, in vivo evaluation of the lead compound shows that this candidate is well tolerated in healthy mice. Additionally, an in vivo anticancer efficacy study in mice using a MDA-MB-231 xenograft model with the lead compound provides good anti-cancer efficacy.


Asunto(s)
Antineoplásicos , Benzofuranos , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Piperazinas/farmacología , Línea Celular , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Proliferación Celular , Apoptosis , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad
8.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628971

RESUMEN

Staphylococcus aureus causes a wide range of infections, and it is one of the leading pathogens responsible for deaths associated with antimicrobial resistance, the rapid spread of which among S. aureus urges the discovery of new antibiotics. The evaluation of in vivo efficacy of novel drug candidates is usually performed using animal models. Recently, zebrafish (Danio rerio) embryos have become increasingly attractive in early drug discovery. Herein, we established a zebrafish embryo model of S. aureus infection for evaluation of in vivo efficacy of novel potential antimicrobials. A local infection was induced by microinjecting mCherry-expressing S. aureus Newman followed by treatment with reference antibiotics via microinjection into different injection sites as well as via waterborne exposure to study the impact of the administration route on efficacy. We successfully used the developed model to evaluate the in vivo activity of the natural product sorangicin A, for which common mouse models were not successful due to fast degradation in plasma. In conclusion, we present a novel screening platform for assessing in vivo activity at the antibiotic discovery stage. Furthermore, this work provides consideration for the choice of an appropriate administration route based on the physicochemical properties of tested drugs.


Asunto(s)
Productos Biológicos , Infecciones Estafilocócicas , Animales , Ratones , Staphylococcus aureus , Pez Cebra , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Modelos Animales de Enfermedad , Infecciones Estafilocócicas/tratamiento farmacológico
9.
Antimicrob Agents Chemother ; 66(12): e0060722, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409128

RESUMEN

Previous studies suggest that 3',5'-dihydro-2'H-spiro[indoline-3,1'-isoquinolin]-2-ones (DSIIQs [spiroquindolones]) are multitarget antiplasmodial agents that combine the actions of spiroindolone and naphthylisoquinoline antimalarial agents. In this study, 12 analogues of compound (±)-5 (moxiquindole), the prototypical spiroquindolone, were synthesized and tested for antiplasmodial activity. Compound (±)-11 (a mixture of compounds 11a and 11b), the most potent analogue, displayed low-nanomolar activity against P. falciparum chloroquine-sensitive 3D7 strain (50% inhibitory concentration [IC50] for 3D7 = 21 ± 02 nM) and was active against all major erythrocytic stages of the parasite life cycle (ring, trophozoite, and schizont); it also inhibited hemoglobin metabolism and caused extensive vacuolation in parasites. In drug-resistant parasites, compound (±)-11 exhibited potent activity (IC50 for Dd2 = 58.34 ± 2.04 nM) against the P. falciparum multidrug-resistant Dd2 strain, and both compounds (±)-5 and (±)-11 displayed significant cross-resistance against the P. falciparum ATP4 mutant parasite Dd2 SJ733 but not against the Dd2 KAE609 strain. In mice, both compounds (±)-5 and (±)-11 displayed dose-dependent reduction of parasitemia with suppressive 50% effective dose (ED50) values of 0.44 and 0.11 mg/kg of body weight, respectively. The compounds were also found to be curative in vivo and are thus worthy of further investigation.


Asunto(s)
Antimaláricos , Malaria Falciparum , Tetrahidroisoquinolinas , Animales , Ratones , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Oxindoles/farmacología , Oxindoles/uso terapéutico , Plasmodium falciparum , Cloroquina/farmacología , Cloroquina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Tetrahidroisoquinolinas/farmacología , Tetrahidroisoquinolinas/uso terapéutico
10.
Antimicrob Agents Chemother ; 66(8): e0236121, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35852367

RESUMEN

Chemotherapy is the key intervention to control visceral leishmaniasis (VL), a neglected tropical disease. Current regimens include not only a few drugs but also present several drawbacks, including moderate to severe toxicity, cost, long-term administration, patient compliance, and growing drug resistance. Thus, the need for better treatment options against VL is a priority. In an endeavor to find an orally active and affordable antileishmanial agent, we evaluated the therapeutic potential of compounds belonging to the (2Z,2'Z)-3,3'-(ethane-1,2-diylbis(azanediyl))bis(1-(4-halophenyl)-6-hydroxyhex-2-en-1-ones) series, identified as inhibitor(s) of Leishmania donovani dipeptidylcarboxypeptidase, a novel drug target. Among them, compound 3c exhibited best in vivo antileishmanial efficacy via both intraperitoneal and oral routes. Therefore, the present study led to the identification of compound 3c as the lead candidate for treating VL.


Asunto(s)
Antiprotozoarios , Leishmania donovani , Leishmaniasis Visceral , Administración Oral , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Resistencia a Medicamentos , Humanos , Leishmaniasis Visceral/tratamiento farmacológico
11.
Antimicrob Agents Chemother ; 66(12): e0092122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36448795

RESUMEN

CUO246, a novel DNA gyrase/topoisomerase IV inhibitor, is active in vitro against a broad range of Gram-positive, fastidious Gram-negative, and atypical bacterial pathogens and retains activity against quinolone-resistant strains in circulation. The frequency of selection for single step mutants of wild-type S. aureus with reduced susceptibility to CUO246 was <4.64 × 10-9 at 4× and 8× MIC and remained low when using an isogenic QRDR mutant (<5.24 × 10-9 at 4× and 8× MIC). Biochemical assays indicated that CUO246 had potent inhibitory activity against both DNA gyrase (GyrAB) and topoisomerase IV (ParCE). Furthermore, CUO246 showed rapid bactericidal activity in time-kill assays and potent in vivo efficacy against S. aureus in a neutropenic murine thigh infection model. These results suggest that CUO246 may be useful in treating infections by various causative agents of acute skin and skin structure infections, respiratory tract infections, and sexually transmitted infections.


Asunto(s)
Girasa de ADN , Topoisomerasa de ADN IV , Animales , Ratones , Girasa de ADN/genética , Topoisomerasa de ADN IV/genética , Inhibidores de Topoisomerasa II/farmacología , ADN Bacteriano , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
12.
Antimicrob Agents Chemother ; 66(9): e0076222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36040172

RESUMEN

Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Alopurinol , Animales , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Febuxostat/farmacología , Febuxostat/uso terapéutico , Ratones , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
13.
Bioorg Med Chem ; 75: 117071, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36332597

RESUMEN

ALK is an attractive therapeutic target for the treatment of non-small cell lung cancer. As an emerging element in medicinal chemistry, boron has achieved great success in the discovery of antitumor drugs and antibacterial agents. Through construction of a BCC (boron-containing compound) compound library and broad kinase screening, we found the ALK inhibitor hit compound 10a. Structural optimization by CADD and isosterism revealed that lead compound 10k has improved activity (ALKL1196M IC50 = 8.4 nM, NCI-H2228 cells IC50 = 520 nM) and better in vitro metabolic stability (human liver microsomes, T1/2 = 238 min). Compound 10k showed good in vivo efficacy in a nude mouse NCI-H2228 lung cancer xenograft model with a TGI of 52 %. Molecular simulation analysis results show that the hydroxyl group on the oxaborole forms a key hydrogen bond with Asn1254 or Asp1270, and this binding site provides a new idea for drug design. This is the first publicly reported lead compound for a boron-containing ALK inhibitor.

14.
Bioorg Med Chem ; 71: 116949, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926326

RESUMEN

RAS protein plays a key role in cellular proliferation and differentiation. RAS gene mutation is a known driver of oncogenic alternation in human cancer. RAS inhibition is an effective therapeutic treatment for solid tumors, but RAS protein has been classified as an undruggable target. Recent reports have demonstrated that a covalent binder to KRAS protein at a mutated cysteine residue (G12C) is effective for the treatment of solid tumors. Here, we report a series of 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one derivatives as potent covalent inhibitors against KRAS G12C identified throughout structural optimization of an acryloyl amine moiety to improve in vitro inhibitory activity. From an X-ray complex structural analysis, the 1-{2,7-diazaspiro[3.5]nonan-2-yl}prop-2-en-1-one moiety binds in the switch-II pocket of KRAS G12C. Further optimization of the lead compound (5c) led to the successful identification of 1-[7-[6-chloro-8-fluoro-7-(5-methyl-1H-indazol-4-yl)-2-[(1-methylpiperidin-4-yl)amino]quinazolin-4-yl]-2,7-diazaspiro[3.5]nonan-2-yl]prop-2-en-1-one (7b), a potent compound with high metabolic stabilities in human and mouse liver microsomes. Compound 7b showed a dose-dependent antitumor effect on subcutaneous administration in an NCI-H1373 xenograft mouse model.


Asunto(s)
Alcanos/farmacología , Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Animales , Proliferación Celular , Humanos , Ratones , Mutación , Neoplasias/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/farmacología , Proteínas ras/genética , Proteínas ras/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(27): 13517-13522, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209048

RESUMEN

As bacterial resistance to traditional antibiotics continues to emerge, new alternatives are urgently needed. Antimicrobial peptides (AMPs) are important candidates. However, how AMPs are designed with in vivo efficacy is poorly understood. Our study was designed to understand structural moieties of cationic peptides that would lead to their successful use as antibacterial agents. In contrast to the common perception, serum binding and peptide stability were not the major reasons for in vivo failure in our studies. Rather, our systematic study of a series of peptides with varying lysines revealed the significance of low cationicity for systemic in vivo efficacy against Gram-positive pathogens. We propose that peptides with biased amino acid compositions are not favored to associate with multiple host factors and are more likely to show in vivo efficacy. Thus, our results uncover a useful design strategy for developing potent peptides against multidrug-resistant pathogens.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias Grampositivas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Aminoácidos/química , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Simulación por Computador , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple , Ratones , Pruebas de Sensibilidad Microbiana
16.
AAPS PharmSciTech ; 24(1): 19, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36526920

RESUMEN

This study aims to design and characterize berberine-loaded wafers for the treatment of chemotherapy-induced oral mucositis. Wafers were prepared by lyophilization of hydrogels of various ratios of chitosan (CS)/sodium alginate (SA) as well as CS/hydroxypropyl methylcellulose (HPMC). In vitro release, in vitro mucoadhesion, porosity, and swelling studies were conducted to select the optimized formulations. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and mechanical properties studies were also performed for further characterization. The efficacy of optimized berberine-loaded wafers in the treatment of oral mucositis was investigated in a 5FU-induced oral mucositis rat model. F2-CS-SA and F6-CS-HPMC wafers exhibited sustained release profile and excellent mucoadhesion strength. Therefore, these wafers were selected as the optimized formulations. SEM confirmed the porous structure of these wafers and is in agreement with the results of porosity and swelling studies. XRD and FTIR studies indicated that berberine was incorporated into the wafer matrix in the amorphous form. In vivo studies demonstrated that topical application of berberine-loaded optimized wafers reduced significantly the severity of 5FU-induced oral mucositis and decreased the expression of inflammatory markers (TNF-α and IL-1ß). The results of in vitro and in vivo studies revealed that berberine-loaded F2-CS-SA and F6-CS-HPMC wafers can be effective in the treatment of chemotherapy-related oral mucositis.


Asunto(s)
Antineoplásicos , Berberina , Quitosano , Estomatitis , Ratas , Animales , Alginatos/química , Quitosano/química , Derivados de la Hipromelosa/química , Estomatitis/inducido químicamente , Estomatitis/tratamiento farmacológico , Espectroscopía Infrarroja por Transformada de Fourier , Fluorouracilo
17.
Artículo en Inglés | MEDLINE | ID: mdl-33468459

RESUMEN

Drug-resistant bacterial pathogens are a serious threat to global health, and antibacterial lysins are at the forefront of innovative treatments for these life-threatening infections. While lysins' general mechanism of action is well understood, the design principles that might enable engineering of performance-enhanced variants are still being formulated. Here, we report a detailed analysis of molecular determinants underlying the in vivo efficacy of lysostaphin, a canonical anti-MRSA (methicillin-resistant Staphylococcus aureus) lysin. Systematic analysis of bacterial binding, growth inhibition, lysis kinetics, and in vivo therapeutic efficacy revealed that binding affinity, and not inherent catalytic firepower, is the dominant driver of lysostaphin efficacy. This insight enabled electrostatic affinity tuning of lysostaphin to produce a single point mutant that manifested dramatically enhanced processivity and lysis kinetics and trended toward improved in vivo efficacy. More generally, these studies provide important insights into the complex relationships between lysin electrostatics, bacterial targeting, cell lysis efficiency, and in vivo efficacy. The lessons learned may enable engineering of other high-performance antibacterial biocatalysts.


Asunto(s)
Lisostafina , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cinética , Lisostafina/metabolismo , Lisostafina/farmacología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Electricidad Estática
18.
Small ; 17(7): e2003899, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33354914

RESUMEN

Novel antimicrobial peptides (AMPs) have revolutionarily evolved into formidable candidates for antibiotic substitute materials against pathogenic infections. However, cost, lability, disorderly sequences, systemic toxicology, and biological profiles have plagued the perennial search. Here, a progressive ß-hairpin solution with the simplest formulation is implanted into an AMP-based therapeutic strategy to systematically reveal the complex balance between function and toxicity of structural moieties, including cationicity, hydrophobicity, cross-strand interactions, center bending, and sequence pattern. Comprehensive implementation of structural identification, ten microorganisms, eleven in vitro barriers, four mammalian cells, and a diversified membrane operation setup led to the emergence of ß-hairpin prototypes from a 24-member library. Lead amphiphiles, WKF-PG and WRF-NG, can tackle bacterial infection through direct antimicrobial efficacy and potential inflammation-limiting capabilities, such as an Escherichia coli challenge in a mouse peritonitis-sepsis model, without observed toxicity after systemic administration. Their optimal states with dissimilar modulators and the unavailable drug resistance related to membrane lytic mechanisms, also provide an usher for renewed innovation among ß-sheet peptide-based antimicrobial biomaterials.


Asunto(s)
Antiinfecciosos , Péptidos Catiónicos Antimicrobianos , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Factores Inmunológicos , Ratones , Estructura Secundaria de Proteína
19.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33055248

RESUMEN

Laninamivir (LAN) is a long-acting neuraminidase (NA) inhibitor (NAI) with a similar binding profile in the influenza NA enzyme active site as those of other NAIs, oseltamivir (OS), zanamivir (ZAN), and peramivir, and may share common resistance markers with these NAIs. We screened viruses with NA substitutions previously found during OS and ZAN selection in avian influenza viruses (AIVs) of the N3 to N9 subtypes for LAN susceptibility. Of the 72 NA substitutions, 19 conferred resistance to LAN, which ranged from 11.2- to 549.8-fold-decreased inhibitory activity over that of their parental viruses. Ten NA substitutions reduced the susceptibility to all four NAIs, whereas the remaining 26 substitutions yielded susceptibility to one or more NAIs. To determine whether the in vitro susceptibility of multi-NAI-resistant AIVs is associated with in vivo susceptibility, we infected BALB/c mice with recombinant AIVs with R292K (ma81K-N3R292K) or Q136K (ma81K-N8Q136K) NA substitutions, which impart in vitro susceptibility only to LAN or OS, respectively. Both ma81K-N3R292K and ma81K-N8Q136K virus-infected mice exhibited reduced weight loss, mortality, and lung viral titers when treated with their susceptible NAIs, confirming the in vitro susceptibility of these substitutions. Together, LAN resistance profiling of AIVs of a range of NA subtypes improves the understanding of NAI resistance mechanisms. Furthermore, the association of in vitro and in vivo NAI susceptibility indicates that our models are useful tools for monitoring NAI susceptibility of AIVs.IMPORTANCE The chemical structures of neuraminidase inhibitors (NAIs) possess similarities, but slight differences can result in variable susceptibility of avian influenza viruses (AIVs) carrying resistance-associated NA substitutions. Therefore, comprehensive susceptibility profiling of these substitutions in AIVs is critical for understanding the mechanism of antiviral resistance. In this study, we profiled resistance to the anti-influenza drug laninamivir in AIVs with substitutions known to impart resistance to other NAIs. We found 10 substitutions that conferred resistance to all four NAIs tested. On the other hand, we found that the remaining 26 NA substitutions were susceptible to at least one or more NAIs and showed for a small selection that in vitro data predicted in vivo behavior. Therefore, our findings highlight the usefulness of screening resistance markers in NA enzyme inhibition assays and animal models of AIV infections.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Guanidinas/farmacología , Virus de la Influenza A/efectos de los fármacos , Neuraminidasa/genética , Piranos/farmacología , Ácidos Siálicos/farmacología , Animales , Aves , Farmacorresistencia Viral Múltiple/genética , Inhibidores Enzimáticos/farmacología , Virus de la Influenza A/enzimología , Virus de la Influenza A/genética , Gripe Aviar/virología , Ratones , Ratones Endogámicos BALB C , Mutación , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/clasificación , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología
20.
Malar J ; 20(1): 457, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34865639

RESUMEN

BACKGROUND: Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A-D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. METHODS: Preclinical evaluation of strasseriolides A-D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC-MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4-5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager. RESULTS: Strasseriolides A-D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. CONCLUSIONS: Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A-D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.


Asunto(s)
Antimaláricos , Ascomicetos/química , Macrólidos , Malaria/tratamiento farmacológico , Plasmodium berghei/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Antimaláricos/toxicidad , Evaluación Preclínica de Medicamentos , Femenino , Macrólidos/química , Macrólidos/farmacología , Macrólidos/toxicidad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA