Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Appl Environ Microbiol ; 88(7): e0214821, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35289640

RESUMEN

UV light is a tool associated with the denaturation of cellular components, DNA damage, and cell disruption. UV treatment is widely used in the decontamination process; however, predicting a sufficient UV dose by using traditional methods is doubtful. In this study, an in-house UVC apparatus was designed to investigate the process of the inactivation of five indicator bacteria when the initial cell concentrations and irradiation intensities varied. Both linear and nonlinear mathematical models were applied to predict the inactivation kinetics. In comparison with the Weibull and modified Chick-Watson models, the Chick-Watson model provided a good fit of the experimental data for five bacteria, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus faecalis, and Bacillus subtilis. The specific death rate (kd) significantly increased when the irradiation intensity (I) increased from 1.41 W/m2 to 3.02 W/m2 and 4.83 W/m2 (P < 0.05). Statistical analysis revealed no significant difference in the kd values among the groups of tested Gram-positive bacteria, Gram-negative bacteria, and B. subtilis spores, but the kd values differed among groups (P < 0.05). The death rate coefficient (k) varied from species to species. The k values of the tested Gram-positive bacteria were higher than those of the Gram-negative bacteria. The thick peptidoglycan layer in the Gram-positive membrane was responsible for UVC resistance. The high guanine-cytosine (GC) content in bacteria also contributed to UV resistance due to the less photoreactive sites on the nucleotides. This investigation provides a good understanding of bacterial inactivation induced by UVC treatment. IMPORTANCE Prevention and control measures for microbial pathogens have attracted worldwide attention due to the recent coronavirus disease 2019 pandemic. UV treatments are used as a commercial control to prevent microbial contamination in diverse applications. Microorganisms exhibit different UV sensitivities, which are often measured by the UV doses required for decreasing the number of microbial contaminants in the logarithmic order. The maximum efficacy of UV is usually observed at 254 nm (residing in the UVC range of the light spectrum). UV technology is a nonthermal physical decontamination measure that does not require any chemicals and consumes low levels of energy while leaving insignificant amounts of chemical residues or toxic compounds. Therefore, obtaining the microbial death kinetics and their intrinsic parameters provided in this study together with the UV photoreaction rate enables advancement in the design of UV treatment systems.


Asunto(s)
COVID-19 , Descontaminación , Bacterias/efectos de la radiación , Desinfección/métodos , Bacterias Gramnegativas/efectos de la radiación , Bacterias Grampositivas/efectos de la radiación , Humanos , Modelos Teóricos , Rayos Ultravioleta
2.
Food Microbiol ; 103: 103948, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35082065

RESUMEN

The bacterial heat shock response in foodborne pathogens is caused by exposure to higher temperatures which poses a great threat to food safety because it can undermine food processing interventions and host defense. The study assessed the heat and acid resistance of Cronobacter sakazakii following heat shock (53 °C for 15min). Inactivation curves of the heat-shocked and non-shocked C. sakazakii cells at four temperatures (56, 58, 60, and 62 °C) and simulated gastric fluid (SGF, pH 3.0) were examined and fitted with the log-linear model and the Weibull model. The inactivation parameters obtained on the basis of the Weibull model showed that heat shock significantly (p < 0.05) increased the values of δ (time to reach 1 log reduction) and t3d (time to reach 3 log reduction) under thermal and acid inactivation. The results proved that heat shock provided C. sakazakii direct protection from a more adverse heat challenge and cross-protection from SGF, i.e. there was a heat shock response. Results of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that seven protein species showed enhanced expression, while four protein species showed decreased expression in the heat-shocked compared to the non-heat-shocked C. sakazakii cells. Quantitative real-time reverse transcriptase PCR (RT-qPCR) revealed upregulation of six stress related genes, ibpA, ibpB (both encoding molecular chaperons), Hsp15 (encoding heat shock protein), Hsp20 (encoding small heat-shock protein), HspQ (encoding proteases) and rpoS (encoding stationary phase sigma factor), following heat shock treatment. In addition, heat shock induced an increase proportion of saturated fatty acids (SFA), cyclic fatty acids (CFA) and the ratio of saturated fatty acids to unsaturated fatty acids (SFA/USFA), whereas reducing the proportion of unsaturated fatty acids (USFA). Consequently, establishment of inactivation models of C. sakazakii could provide data support for quantitative microbial risk assessment (QMRA). Exploration of enhanced resistance mechanisms might provide clues for prevention and control of contamination by heat-shocked C. sakazakii.


Asunto(s)
Cronobacter sakazakii , Cronobacter sakazakii/genética , Microbiología de Alimentos , Respuesta al Choque Térmico , Calor , Viabilidad Microbiana
3.
Scand J Immunol ; 94(5): e13098, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34940993

RESUMEN

Costimulatory and coinhibitory mechanisms appear to be involved throughout immune responses to control their specificity and level. Many mechanisms operate; therefore, various theoretical models should be considered complementary rather than competing. One such coinhibitory model, pictured in 1971, involves the crosslinking of antigen receptors with inhibitory Fc receptors by antigen/antibody complexes. This model was prompted by observations that the Fc portion of antibody was required for potent suppression of immune responses by antibody. The signal via the antigen receptor wakes up T or B cells, providing specificity, while costimulators and coinhibitors stimulate or inhibit these awoken cells. The recent observations that administration of monoclonal anti-SARS-CoV-2 spike antibodies in early COVID-19 patients inhibits the induction of clinically damaging autoimmune antibodies suggest they may provide negative Fc signals that are blocked in COVID-19 patients. Furthermore, the reduced ability of SARS-CoV-2 antigen to localize to germinal centres in COVID-19 patients also suggests a block in binding of the Fc of antibody bound to antigen on FcγRIIb of follicular dendritic cells. The distinction between self and foreign is made not only at the beginning of immune responses but also throughout, and involves multiple mechanisms and models. There are past beginnings (history of models) and current and future beginnings for solving serious clinical problems (such as COVID-19) and different types of models used for understanding the complexities of fundamental immunology.


Asunto(s)
COVID-19/inmunología , Modelos Inmunológicos , Receptores Fc/metabolismo , SARS-CoV-2/fisiología , Animales , Anticuerpos Antivirales/metabolismo , Complejo Antígeno-Anticuerpo/metabolismo , Autoanticuerpos/metabolismo , Humanos , Terapia de Inmunosupresión
4.
Environ Sci Technol ; 55(5): 3156-3164, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33583178

RESUMEN

The disinfection susceptibilities of viruses vary even among variants, yet the inactivation efficiency of a certain virus genotype, species, or genus was determined based on the susceptibility of its laboratory strain. The objectives were to evaluate the variability in susceptibilities to free chlorine, UV254, and ozone among 13 variants of coxsackievirus B5 (CVB5) and develop the model allowing for predicting the overall inactivation of heterogeneous CVB5. Our results showed that the susceptibilities differed by up to 3.4-fold, 1.3-fold, and 1.8-fold in free chlorine, UV254, and ozone, respectively. CVB5 in genogroup B exhibited significantly lower susceptibility to free chlorine and ozone than genogroup A, where the laboratory strain, Faulkner, belongs. The capsid protein in genogroup B contained a lower number of sulfur-containing amino acids, readily reactive to oxidants. We reformulated the Chick-Watson model by incorporating the probability distributions of inactivation rate constants to capture the heterogeneity. This expanded Chick-Watson model indicated that up to 4.2-fold larger free chlorine CT is required to achieve 6-log inactivation of CVB5 than the prediction by the Faulkner strain. Therefore, it is recommended to incorporate the variation in disinfection susceptibilities for predicting the overall inactivation of a certain type of viruses.


Asunto(s)
Ozono , Virus , Purificación del Agua , Cloro , Desinfección , Enterovirus Humano B
5.
Intervirology ; 61(5): 214-222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29316545

RESUMEN

Water, a frequent vehicle for the transmission of viruses, may permit their survival, but many environmental factors will have an adverse effect on the viral population. Risk evaluation requires identification of these factors and assessment of the inactivation rate of infectious viruses. A higher temperature means a faster reduction of the viral population, as do increased sunlight, higher antimicrobial concentration, or higher oxygen levels. Another documented impact is linked to the presence of indigenous microbial populations: virus survival is higher in sterile water. Environmental factors inactivate viruses through direct or indirect action on one part of the viral structure: genome, capsid, or envelope if present. Viral populations also have resistance mechanisms, generally involving physical shielding from adverse effects; such protective behaviors include aggregation, adhesion, or internalization inside living structures. Because of these phenomena, inactivation kinetics may deviate from traditional log-linear shapes. It is therefore important to account for all factors that may impact on survival, to carefully design experiments to ensure sufficient data, and to select the right modelling approach. Comparison between studies is difficult. It is suggested that laboratory studies include standard conditions of water, and analyze the impact of different factors as precisely as possible. Larger studies in natural environments, though more difficult, are also much needed.


Asunto(s)
Viabilidad Microbiana , Inactivación de Virus , Microbiología del Agua , Transmisión de Enfermedad Infecciosa , Virosis/virología
6.
Int J Food Microbiol ; 413: 110601, 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38301540

RESUMEN

Vegetables are globally associated with a considerable number of foodborne outbreaks caused by viral infections, specifically human norovirus. In fresh produce industry, washing represents a critical step for food safety as process wash water (PWW) needs to be maintained at appropriate microbial quality to prevent water-mediated cross-contamination. This study aimed to explore the disinfection efficacy of chlorine (free chlorine, FC), chlorine dioxide (ClO2) and peracetic acid (PAA) in PWW against infectious human norovirus and Tulane virus (TV). First, we tested the extent of TV inactivation in baby leaf, bell pepper, and vegetables mix PWW and monitored the viral decay by cell culture. Then, inactivation kinetics were defined for infectious human norovirus exposed to FC, ClO2 and PAA in baby leaves PWW using the human intestinal enteroids (HIE) system. Finally, kinetic inactivation models were fitted to TV reduction and decay of sanitizers to aid the implementation of disinfection strategies. Results showed that >8 log10 human norovirus and 3.9 log10 TV were inactivated by 20 ppm FC within 1 min; and by 3 ppm ClO2 in 1 min (TV) or 5 min (norovirus). PAA treatment at 80 ppm reduced ca. 2 log10 TV but not completely inactivated the virus even after 20 min exposure, while 5 min treatment prevented norovirus replication in HIE. TV inactivation in PWWs was described using an exponential decay model. Taking these data together, we demonstrated the value of applying the HIE model to validate current operational limits for the most commonly used sanitizers. The inactivation kinetics for human norovirus and TV, along with the predictive model described in this study expand the current knowledge to implement post-harvest produce safety procedures in industry settings.


Asunto(s)
Desinfectantes , Norovirus , Humanos , Desinfección/métodos , Verduras , Cloro/farmacología , Ácido Peracético/farmacología , Norovirus/fisiología , Agua , Inactivación de Virus , Desinfectantes/farmacología
7.
Int J Food Microbiol ; 364: 109535, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35033977

RESUMEN

Following the market trends, the consumption of fresh and cold-pressed juice in Europe is increasing. However, a primary concern - particularly in apple juice - is the related outbreaks caused by food-borne pathogens. One of the challenges is to find methods able to reduce pathogenic loads while avoiding deterioration of nutritional properties and bioactive compounds that occur in thermal pasteurization processes. In this study, the inactivation of Escherichia coli, Salmonella enterica and Listeria monocytogenes was evaluated under different ultraviolet C (UVC254nm) light treatments (up to 10,665.9 ± 28.1 mJ/cm2), in two different steps of the production chain (before and after juice processing): on apple peel discs and in apple juice. The systems proposed were a horizontal chamber with UVC254nm emitting lamps treating the product disposed at a distance of 12 cm, and a tank containing UVC254nm lamps and in which the product is immersed and agitated. Final reductions ranged from 3.3 ± 0.5 to 5.3 ± 0.4 logarithmic units, depending on the microorganism, matrix and used device. The survival curves were adjusted to Weibull and biphasic models (R2-adj ≥ 0.852), and UVC doses needed for the first decimal reduction were calculated, being lower for the apple peel discs (0.20 to 83.83 mJ/cm2) than they were for apple juice (174.60 to 1273.31 mJ/cm2), probably for the low transmittance of the apple juice compared to the surface treatment occurring on the peels. Within the treatments evaluated, the UVC254nm irradiation of apple peels immersed in water was the best option as it resulted in a reduction of the tested microorganisms of ca. 2-3 log units at lower UVC254nm doses (< 500 mJ/cm2) when compared to those occurring in apple peel treated with the UVC chamber and in juice. As contamination can proceed from apples, the sanitization of these fruit prior to juice production may be helpful in reducing the safety risks of the final product, reducing the drawbacks related to the poor transmittance of the fruit juices.


Asunto(s)
Escherichia coli O157 , Listeria monocytogenes , Malus , Salmonella enterica , Bebidas , Microbiología de Alimentos , Jugos de Frutas y Vegetales , Salmonella typhimurium , Rayos Ultravioleta
8.
Ultrason Sonochem ; 72: 105415, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33333392

RESUMEN

Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process.


Asunto(s)
Lactobacillales/fisiología , Carne/microbiología , Viabilidad Microbiana , Ondas Ultrasónicas , Emulsiones , Factores de Tiempo
9.
BMC Res Notes ; 14(1): 243, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187572

RESUMEN

OBJECTIVE: The Delta-Notch signaling pathway induces fine-grained patterns of differentiation from initially homogeneous progenitor cells in many biological contexts, including Drosophila bristle formation, where mathematical modeling reportedly suggests the importance of production rate of the components of this signaling pathway. In contrast, the epithelial differentiation of bile ducts in the developing liver is unique in that it occurs around the portal vein cells, which express extremely high amounts of Delta ligands and act as a disturbance for the amount of Delta ligands in the field by affecting the expression levels of downstream target genes in the cells nearby. In the present study, we mathematically examined the dynamics of the Delta-Notch signaling pathway components in disturbance-driven biliary differentiation, using the model for fine-grained patterns of differentiation. RESULTS: A portal vein cell induced a high Notch signal in its neighboring cells, which corresponded to epithelial differentiation, depending on the production rates of Delta ligands and Notch receptors. In addition, this epithelial differentiation tended to occur in conditions where fine-grained patterning was reported to be lacking. These results highlighted the potential importance of the stability towards homogeneity determined by the production rates in Delta ligands and Notch receptors, in a disturbance-dependent epithelial differentiation.


Asunto(s)
Tipificación del Cuerpo , Péptidos y Proteínas de Señalización Intracelular , Diferenciación Celular , Proteínas de la Membrana/genética , Vena Porta , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA