Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Exp Bot ; 100: 55-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29367790

RESUMEN

Plant volatile organic compounds (VOCs) elicited in response to herbivory can serve as cues for parasitic and predatory insects, but the modification of VOC elicitation responses under interacting abiotic stresses is poorly known. We studied foliage VOC emissions in the deciduous tree Alnus glutinosa induced by feeding by the larvae of green alder sawfly (Monsoma pulveratum) under well-watered and drought-stressed conditions. Drought strongly curbed photosynthesis rate and stomatal conductance, but there were no effects of insect feeding on photosynthetic characteristics. Feeding induced emissions of volatile products of lipoxygenase pathway and monoterpenes, and emissions of stress marker compounds (E)-ß-ocimene and homoterpene DMNT. The emissions were more strongly elicited and reached a maximum value earlier in drought-stressed plants. In addition, methyl salicylate emissions were elicited in herbivory-fed drought-stressed plants. Herbivores were more strongly attracted to well-watered plants and consumed more than a four-fold greater fraction of leaf area than they consumed from drought-treated plants. Overall, this study demonstrates an important priming effect of drought, suggesting that plants under combined drought/herbivory stress are more resistant to herbivores.

2.
Plant Sci ; 321: 111320, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35696920

RESUMEN

Heatwave (HW) combined with water stress (WS) are critical environmental factors negatively affecting crop development. This study aimed to quantify the individual and combined effects of HW and WS during early reproductive stages on leaf and nodule functioning and their relation with final soybean seed yield (SY). For this purpose, during flowering (R2) and pod formation (R4) soybean (Glycine max L. Merr.) plants were exposed to different temperature (ambient[25ºC] versus HW[40ºC]) and water availability (full capacity versus WS[20% field capacity]). HW, WS and their combined impact on yield depended on the phenological stage at which stress was applied being more affected at R4. For gas exchange, WS severely impaired photosynthetic machinery, especially when combined with HS. Impaired photoassimilate supply at flowering caused flower abortion and a significant reduction in final SY due to interacting stresses and WS. On the other hand, at pod formation (R4), decreased leaf performance caused additive effect on SY by decreasing pod setting and seed size with combined stresses. At the nodule level, WS (alone or in combination with HW) caused nodule impairment, which was reflected by lower leaf N. Such response was linked with a poor malate supply to bacteroids and feed-back inhibition caused by nitrogenous compounds accumulation. In summary, our study noted that soybean sensitivity to interacting heat and water stresses was highly conditioned by the phenological stage at which it occurs with, R4 stage being the critical moment. To our knowledge this is the first soybean work integrating combined stresses at early reproductive stages.


Asunto(s)
Deshidratación , Glycine max , Carbono , Fotosíntesis , Semillas , Glycine max/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA