Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Magn Reson Med ; 83(6): 2343-2355, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31722119

RESUMEN

PURPOSE: MRI-guided cardiovascular intervention using standard metal guidewires can produce focal tissue heating caused by induced radiofrequency guidewire currents. It has been shown that safe operation is made possible by using parallel transmit radiofrequency coils driven in the null current mode, which does not induce radiofrequency currents and hence allows safe tissue visualization. We propose that the maximum current modes, usually considered unsafe, be used at very low power levels to visualize conductive wires, and we investigate pulse sequences best suited for this application. METHODS: Spoiled gradient echo, balanced steady-state free precession, and turbo spin echo sequences were evaluated for their ability to visualize a conductive guidewire embedded in a gel phantom when run in maximum current modes at very low power level. Temperature at the guidewire tip was monitored for safety assessment. RESULTS: Excellent guidewire visualization could be achieved using maximum current modes excitation, with the turbo spin echo sequence giving the best image quality. Although turbo spin echo is usually considered to be a high-power sequence, our method reduced all pulses to 1% amplitude (0.01% power), and heating was not detected. In addition, visualization of background tissue can be achieved using null current mode, also with no recorded heating at the guidewire tip even when running at 100% (reported) specific absorption rate. CONCLUSION: Parallel transmit is a promising approach for both guidewire and tissue visualization using maximum and null current modes, respectively, for interventional cardiac MRI. Such systems can switch excitation mode instantaneously, allowing for flexible integration into interactive sequences.


Asunto(s)
Imagen por Resonancia Magnética Intervencional , Imagen por Resonancia Magnética , Diseño de Equipo , Fantasmas de Imagen , Ondas de Radio
2.
J Cardiovasc Magn Reson ; 20(1): 41, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29925397

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance (CMR) fluoroscopy allows for simultaneous measurement of cardiac function, flow and chamber pressure during diagnostic heart catheterization. To date, commercial metallic guidewires were considered contraindicated during CMR fluoroscopy due to concerns over radiofrequency (RF)-induced heating. The inability to use metallic guidewires hampers catheter navigation in patients with challenging anatomy. Here we use low specific absorption rate (SAR) imaging from gradient echo spiral acquisitions and a commercial nitinol guidewire for CMR fluoroscopy right heart catheterization in patients. METHODS: The low-SAR imaging protocol used a reduced flip angle gradient echo acquisition (10° vs 45°) and a longer repetition time (TR) spiral readout (10 ms vs 2.98 ms). Temperature was measured in vitro in the ASTM 2182 gel phantom and post-mortem animal experiments to ensure freedom from heating with the selected guidewire (150 cm × 0.035″ angled-tip nitinol Terumo Glidewire). Seven patients underwent CMR fluoroscopy catheterization. Time to enter each chamber (superior vena cava, main pulmonary artery, and each branch pulmonary artery) was recorded and device visibility and confidence in catheter and guidewire position were scored on a Likert-type scale. RESULTS: Negligible heating (< 0.07°C) was observed under all in vitro conditions using this guidewire and imaging approach. In patients, chamber entry was successful in 100% of attempts with a guidewire compared to 94% without a guidewire, with failures to reach the branch pulmonary arteries. Time-to-enter each chamber was similar (p=NS) for  the two approaches. The guidewire imparted useful catheter shaft conspicuity and enabled interactive modification of catheter shaft stiffness, however, the guidewire tip visibility was poor. CONCLUSIONS: Under specific conditions, trained operators can apply low-SAR imaging and using a specific fully-insulated metallic nitinol guidewire (150 cm × 0.035" Terumo Glidewire) to augment clinical CMR fluoroscopy right heart catheterization. TRIAL REGISTRATION: Clinicaltrials.gov NCT03152773 , registered May 15, 2017.


Asunto(s)
Cateterismo Cardíaco/instrumentación , Catéteres Cardíacos , Imagen por Resonancia Magnética Intervencional/instrumentación , Aleaciones , Animales , Cateterismo Cardíaco/efectos adversos , Diseño de Equipo , Calor , Humanos , Imagen por Resonancia Magnética Intervencional/efectos adversos , Ensayo de Materiales , Modelos Animales , Fantasmas de Imagen , Valor Predictivo de las Pruebas , Sus scrofa , Factores de Tiempo , Flujo de Trabajo
3.
J Cardiovasc Magn Reson ; 19(1): 54, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28750642

RESUMEN

BACKGROUND: Quantification of cardiac output and pulmonary vascular resistance (PVR) are critical components of invasive hemodynamic assessment, and can be measured concurrently with pressures using phase contrast CMR flow during real-time CMR guided cardiac catheterization. METHODS: One hundred two consecutive patients underwent CMR fluoroscopy guided right heart catheterization (RHC) with simultaneous measurement of pressure, cardiac output and pulmonary vascular resistance using CMR flow and the Fick principle for comparison. Procedural success, catheterization time and adverse events were prospectively collected. RESULTS: RHC was successfully completed in 97/102 (95.1%) patients without complication. Catheterization time was 20 ± 11 min. In patients with and without pulmonary hypertension, baseline mean pulmonary artery pressure was 39 ± 12 mmHg vs. 18 ± 4 mmHg (p < 0.001), right ventricular (RV) end diastolic volume was 104 ± 64 vs. 74 ± 24 (p = 0.02), and RV end-systolic volume was 49 ± 30 vs. 31 ± 13 (p = 0.004) respectively. 103 paired cardiac output and 99 paired PVR calculations across multiple conditions were analyzed. At baseline, the bias between cardiac output by CMR and Fick was 5.9% with limits of agreement -38.3% and 50.2% with r = 0.81 (p < 0.001). The bias between PVR by CMR and Fick was -0.02 WU.m2 with limits of agreement -2.6 and 2.5 WU.m2 with r = 0.98 (p < 0.001). Correlation coefficients were lower and limits of agreement wider during physiological provocation with inhaled 100% oxygen and 40 ppm nitric oxide. CONCLUSIONS: CMR fluoroscopy guided cardiac catheterization is safe, with acceptable procedure times and high procedural success rate. Cardiac output and PVR measurements using CMR flow correlated well with the Fick at baseline and are likely more accurate during physiological provocation with supplemental high-concentration inhaled oxygen. TRIAL REGISTRATION: Clinicaltrials.gov NCT01287026 , registered January 25, 2011.


Asunto(s)
Cateterismo Cardíaco , Gasto Cardíaco , Hipertensión Pulmonar/diagnóstico por imagen , Imagen por Resonancia Magnética Intervencional , Arteria Pulmonar/fisiopatología , Resistencia Vascular , Administración por Inhalación , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Fluoroscopía , Humanos , Hipertensión Pulmonar/fisiopatología , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Óxido Nítrico/administración & dosificación , Oxígeno/administración & dosificación , Valor Predictivo de las Pruebas , Estudios Prospectivos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA