Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Anim Ecol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075731

RESUMEN

Research Highlight: Bourbour et al., 2024. Feeding en route: Prey availability and traits influence prey selection by an avian predator on migration. Journal of Animal Ecology. Diet selection plays a key role in the eco-evolutionary dynamics of animals, exhibiting substantial variability across species, environments and seasons. The complex interplay between movement capability, hunting strategies, habitat use, prey traits and availability shapes the foraging patterns of avian predators. However, detailed information on how these birds exploit their extensive territories remains limited. In this study, Bourbour et al. utilised a novel integration of eDNA metabarcoding and citizen science to explore predator-prey interactions between migrating sharp-shinned hawks (Accipiter striatus) and an ephemeral avian prey community along North America's Pacific flyway. The research identified 1396 detections from the diet (65 species) of 588 migrating sharp-shinned hawks. Hawks' diet composition correlated with prey abundance indices sourced from the eBird database throughout the migration season, highlighting the significant impact of prey availability-shaped by migration tendency, flocking behaviour, and habitat-on raptor-songbird interactions. Notably, the study also found significant differences in prey size between male and female hawks, indicating that sexual dimorphism has led to diverse foraging strategies during migration. These findings underscore the potential of combining eDNA metabarcoding with citizen science to deepen our understanding of the foraging ecology of highly mobile and wide-ranging birds, as well as to monitor complex and vast ecosystems.

2.
Ecol Appl ; 32(6): e2621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35389538

RESUMEN

Dedicated long-term monitoring at appropriate spatial and temporal scales is necessary to understand biodiversity losses and develop effective conservation plans. Wildlife monitoring is often achieved by obtaining data at a combination of spatial scales, ranging from local to broad, to understand the status, trends, and drivers of individual species or whole communities and their dynamics. However, limited resources for monitoring necessitates tradeoffs in the scope and scale of data collection. Careful consideration of the spatial and temporal allocation of finite sampling effort is crucial for monitoring programs that span multiple spatial scales. Here we evaluate the ability of five monitoring designs-stratified random, weighted effort, indicator unit, rotating panel, and split panel-to recover parameter values that describe the status (occupancy), trends (change in occupancy), and drivers (spatially varying covariate and an autologistic term) of wildlife communities at two spatial scales. Using an amphibian monitoring program that spans a network of US national parks as a motivating example, we conducted a simulation study for a regional community occupancy sampling program to compare the monitoring designs across varying levels of sampling effort (ranging from 10% to 50%). We found that the stratified random design outperformed the other designs for most parameters of interest at both scales and was thus generally preferable in balancing the estimation of status, trends, and drivers across scales. However, we found that other designs had improved performance in specific situations. For example, the rotating panel design performed best at estimating spatial drivers at a regional level. Thus, our results highlight the nuanced scenarios in which various design strategies may be preferred and offer guidance as to how managers can balance common tradeoffs in large-scale and long-term monitoring programs in terms of the specific knowledge gained. Monitoring designs that improve accuracy in parameter estimates are needed to guide conservation policy and management decisions in the face of broad-scale environmental challenges, but the preferred design is sensitive to the specific objectives of a monitoring program.


Asunto(s)
Animales Salvajes , Biodiversidad , Animales , Ecosistema
3.
J Epidemiol ; 30(8): 362-370, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32475884

RESUMEN

BACKGROUND: The World Health Organization declared the novel coronavirus outbreak (COVID-19) to be a pandemic on March 11, 2020. Large-scale monitoring for capturing the current epidemiological situation of COVID-19 in Japan would improve preparation for and prevention of a massive outbreak. METHODS: A chatbot-based healthcare system named COOPERA (COvid-19: Operation for Personalized Empowerment to Render smart prevention And care seeking) was developed using the LINE app to evaluate the current Japanese epidemiological situation. LINE users could participate in the system either though a QR code page in the prefectures' websites or a banner at the top of the LINE app screen. COOPERA asked participants questions regarding personal information, preventive actions, and non-specific symptoms related to COVID-19 and their duration. We calculated daily cross correlation functions between the reported number of infected cases confirmed using polymerase chain reaction and the symptom-positive group captured by COOPERA. RESULTS: We analyzed 206,218 participants from three prefectures reported between March 5 and 30, 2020. The mean age of participants was 44.2 (standard deviation, 13.2) years. No symptoms were reported by 96.93% of participants, but there was a significantly positive correlation between the reported number of COVID-19 cases and self-reported fevers, suggesting that massive monitoring of fever might help to estimate the scale of the COVID-19 epidemic in real time. CONCLUSIONS: COOPERA is the first real-time system being used to monitor trends in COVID-19 in Japan and provides useful insights to assist political decisions to tackle the epidemic.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Brotes de Enfermedades/prevención & control , Monitoreo Epidemiológico , Pandemias/prevención & control , Neumonía Viral/epidemiología , Neumonía Viral/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Femenino , Humanos , Japón/epidemiología , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Ecol Evol ; 14(8): e70204, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39170053

RESUMEN

The ongoing expansion of wolf (Canis lupus) populations in Europe has led to a growing demand for up-to-date abundance estimates. Non-invasive genetic sampling (NGS) is now widely used to monitor wolves, as it allows individual identification and abundance estimation without physically capturing individuals. However, NGS is resource-intensive, partly due to the elusive behaviour and wide distribution of wolves, as well as the cost of DNA analyses. Optimisation of sampling strategies is therefore a requirement for the long-term sustainability of wolf monitoring programs. Using data from the 2020-2021 Italian Alpine wolf monitoring, we investigate how (i) reducing the number of samples genotyped, (ii) reducing the number of transects, and (iii) reducing the number of repetitions of each search transect impacted spatial capture-recapture population size estimates. Our study revealed that a 25% reduction in the number of transects or, alternatively, a 50% reduction in the maximum number of repetitions yielded abundance estimates comparable to those obtained using the entire dataset. These modifications would result in a 2046 km reduction in total transect length and 19,628 km reduction in total distance searched. Further reducing the number of transects resulted in up to 15% lower and up to 17% less precise abundance estimates. Reducing only the number of genotyped samples led to higher (5%) and less precise (20%) abundance estimates. Randomly subsampling genotyped samples reduced the number of detections per individual, whereas subsampling search transects resulted in a less pronounced decrease in both the total number of detections and individuals detected. Our work shows how it is possible to optimise wolf monitoring by reducing search effort while maintaining the quality of abundance estimates, by adopting a modelling framework that uses a first survey dataset. We further provide general guidelines on how to optimise sampling effort when using spatial capture-recapture in large-scale monitoring programmes.

5.
Mar Pollut Bull ; 196: 115481, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857060

RESUMEN

Anthropogenic Marine Litter (AML) accumulating on beaches causes damage to coastal ecosystems and high costs to local communities. Volunteers sampled AML on 130 beaches along the central and southern East Pacific coasts, with AML densities ranging from 0.46 to 2.26 items m-2 in the different countries. AML composition was dominated by plastics and cigarette butts, the latter especially in Mexico and Chile. The accumulation of AML in the upper zones of the beaches and substantial proportions of cigarette butts, glass and metal pointed mainly to local sources. Statistical modelling of litter sources on continental beaches revealed that tourism, access and related infrastructure (e.g. parking lots) best explained AML densities, while plastic densities were also influenced by the distance from river mouths and national Gross Domestic Product. Large-scale monitoring can be a useful tool to evaluate the effectiveness of public policies that should primarily focus on land sources.


Asunto(s)
Leucemia Mieloide Aguda , Residuos , Humanos , Residuos/análisis , Monitoreo del Ambiente , Ecosistema , Playas , Plásticos
6.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35884228

RESUMEN

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

7.
Methods Ecol Evol ; 6(1): 109-118, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25685310

RESUMEN

The α, ß, γ diversity decomposition methodology is commonly used to investigate changes in diversity over space or time but rarely conjointly. However, with the ever-increasing availability of large-scale biodiversity monitoring data, there is a need for a sound methodology capable of simultaneously accounting for spatial and temporal changes in diversity.Using the properties of Chao's index, we adapted Rao's framework of diversity decomposition between orthogonal dimensions to a multiplicative α, ß, γ decomposition of functional or phylogenetic diversity over space and time, thereby combining their respective properties. We also developed guidelines for interpreting both temporal and spatial ß-diversities and their interaction.We characterised the range of ß-diversity estimates and their relationship to the nested decomposition of diversity. Using simulations, we empirically demonstrated that temporal and spatial ß-diversities are independent from each other and from α and γ-diversities when the study design is balanced, but not otherwise. Furthermore, we showed that the interaction term between the temporal and the spatial ß-diversities lacked such properties.We illustrated our methodology with a case study of the spatio-temporal dynamics of functional diversity in bird assemblages in four regions of France. Based on these data, our method makes it possible to discriminate between regions experiencing different diversity changes in time. Our methodology may therefore be valuable for comparing diversity changes over space and time using large-scale datasets of repeated surveys.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA