Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.186
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mol Cell ; 73(2): 304-313.e3, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30527666

RESUMEN

LIN28 RNA binding proteins are dynamically expressed throughout mammalian development and during disease. However, it remains unclear how changes in LIN28 expression define patterns of post-transcriptional gene regulation. Here we show that LIN28 expression level is a key variable that sets the magnitude of protein translation. By systematically varying LIN28B protein levels in human cells, we discovered a dose-dependent divergence in transcriptome-wide ribosome occupancy that enabled the formation of two discrete translational subpopulations composed of nearly all expressed genes. This bifurcation in gene expression was mediated by a redistribution in Argonaute association, from let-7 to non-let-7 microRNA families, resulting in a global shift in cellular miRNA activity. Post-transcriptional effects were scaled across the physiological LIN28 expression range. Together, these data highlight the central importance of RBP expression level and its ability to encode regulation.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Transcriptoma , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Sitios de Unión , Unión Competitiva , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células 3T3 NIH , Unión Proteica , Proteínas de Unión al ARN/genética , Ribosomas/genética
2.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31031083

RESUMEN

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Asunto(s)
Guanosina/análogos & derivados , Metiltransferasas/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN , Células A549 , Secuencia de Bases , Bioensayo , Células CACO-2 , Movimiento Celular , Proliferación Celular , Guanosina/metabolismo , Células HEK293 , Humanos , Metilación , Metiltransferasas/metabolismo , MicroARNs/metabolismo , Conformación de Ácido Nucleico
3.
J Cell Sci ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308343

RESUMEN

Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNA (miRNA) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNA, the roles of other micro RNA-binding proteins (miRBPs) remain unclear in regulation of miRNA loading, dissociation from RISC, and extracellular release. In this study, we perform protein arrays to profile miRBPs and identify 118 RNA-binding proteins directly binding with miRNAs. Among those proteins, RBP quaking (QKI) inhibits extracellular release of mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as hnRNPD/AUF1 and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates the Toll-like Receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in mouse cortex. Thus, this study reveals contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.

4.
Mol Cell ; 71(2): 271-283.e5, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029005

RESUMEN

LIN28 is a bipartite RNA-binding protein that post-transcriptionally inhibits the biogenesis of let-7 microRNAs to regulate development and influence disease states. However, the mechanisms of let-7 suppression remain poorly understood because LIN28 recognition depends on coordinated targeting by both the zinc knuckle domain (ZKD), which binds a GGAG-like element in the precursor, and the cold shock domain (CSD), whose binding sites have not been systematically characterized. By leveraging single-nucleotide-resolution mapping of LIN28 binding sites in vivo, we determined that the CSD recognizes a (U)GAU motif. This motif partitions the let-7 microRNAs into two subclasses, precursors with both CSD and ZKD binding sites (CSD+) and precursors with ZKD but no CSD binding sites (CSD-). LIN28 in vivo recognition-and subsequent 3' uridylation and degradation-of CSD+ precursors is more efficient, leading to their stronger suppression in LIN28-activated cells and cancers. Thus, CSD binding sites amplify the regulatory effects of LIN28.


Asunto(s)
MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Células Madre Embrionarias , Células Hep G2 , Humanos , Células K562 , Ratones , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Dominios Proteicos , Estructura Terciaria de Proteína , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/genética
5.
Genes Dev ; 32(13-14): 903-908, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29950491

RESUMEN

Loss of function of the DIS3L2 exoribonuclease is associated with Wilms tumor and the Perlman congenital overgrowth syndrome. LIN28, a Wilms tumor oncoprotein, triggers the DIS3L2-mediated degradation of the precursor of let-7, a microRNA that inhibits Wilms tumor development. These observations have led to speculation that DIS3L2-mediated tumor suppression is attributable to let-7 regulation. Here we examine new DIS3L2-deficient cell lines and mouse models, demonstrating that DIS3L2 loss has no effect on mature let-7 levels. Rather, analysis of Dis3l2-null nephron progenitor cells, a potential cell of origin of Wilms tumors, reveals up-regulation of Igf2, a growth-promoting gene strongly associated with Wilms tumorigenesis. These findings nominate a new potential mechanism underlying the pathology associated with DIS3L2 deficiency.


Asunto(s)
Exorribonucleasas/genética , Macrosomía Fetal/genética , Factor II del Crecimiento Similar a la Insulina/genética , Regulación hacia Arriba , Tumor de Wilms/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , MicroARNs/genética , Mutación , Nefronas/citología , Nefronas/fisiopatología , Células Madre
6.
FASEB J ; 38(10): e23708, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38805151

RESUMEN

Metacestodiasis is an infectious disease caused by the larval stage of cestode parasites. This disease poses a serious health hazard to wildlife, livestock, and humans, and it incurs substantial economic losses by impacting the safety of the livestock industry, the quality of meat production, and public health security. Unfortunately, there is currently no available molecular diagnostic method capable of distinguishing cysticercus- and Echinococcus-derived microRNAs (miRNAs) from other helminthes and hosts in the plasma of metacestode-infected animals. This study aims to develop a specific, sensitive, and cost-efficient molecular diagnostic method for cysticercosis and echinococcosis, particularly for early detection. The study developed a rolling circular amplification (RCA)-assisted CRISPR/Cas9 detection method based on parasite-derived miRNA let-7-5p. Using a series of dilutions of the let-7 standard, the limit of detection (LOD) of the qPCR, RCA, and RCA-assisted CRISPR/Cas9 methods was compared. The specificity of qPCR and CRISPR/Cas9 was evaluated using four artificially synthesized let-7 standards from different species. A total of 151 plasma samples were used to evaluate the diagnostic performance. Additionally, the study also assessed the correlation between plasma levels of let-7-5p, the number of Taenia pisiformis cysticerci, and the weight of Echinococcus multilocularis cysts. The results demonstrated that the RCA-assisted CRISPR/Cas9 assay could significantly distinguish let-7 from cestodes and other species, achieving a LOD of 10 aM; the diagnostic sensitivity and specificity for rabbit cysticercosis and mouse E. multilocularis were 100% and 97.67%, and 100% and 100%, respectively. Notably, let-7-5p gradually increased in the plasma of T. pisiformis-infected rabbits from 15 days post infection (dpi), peaked at 60 dpi, and persisted until 120 dpi. In E. multilocularis-infected mice, let-7-5p gradually increased from 15 dpi and persisted until 90 dpi. Furthermore, the expression of let-7-5p positively correlated with the number of cysticerci and cyst weight. These results indicated that the let-7-5p-based RCA-assisted CRISPR/Cas9 assay is a sensitive and specific detection method that can be used as a universal diagnostic method for metacestodiasis, particularly for early diagnosis (15 dpi).


Asunto(s)
Sistemas CRISPR-Cas , Cisticercosis , MicroARNs , Animales , MicroARNs/genética , MicroARNs/sangre , Ratones , Cisticercosis/diagnóstico , Cisticercosis/veterinaria , Cisticercosis/parasitología , Equinococosis/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Sensibilidad y Especificidad , Humanos
7.
Mol Ther ; 32(8): 2624-2640, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38956871

RESUMEN

Chronic pancreatitis (CP) is marked by progressive fibrosis and the activation of pancreatic stellate cells (PSCs), accompanied by the destruction of pancreatic parenchyma, leading to the loss of acinar cells (ACs). Few research studies have explored the mechanism by which damaged ACs (DACs) contribute to PSCs activation and pancreatic fibrosis. Currently, there are no effective drugs for curing CP or limiting the progression of pancreatic fibrosis. In this research, co-culture with intact acinar cells (IACs) suppressed PSC activation, while co-culture with DACs did the opposite. Krüppel-like factor 4 (KLF4) was significantly upregulated in DACs and was established as the key molecule that switches ACs from PSCs-suppressor to PSCs-activator. We revealed the exosomes of IACs contributed to the anti-activated function of IACs-CS on PSCs. MiRNome profiling showed that let-7 family is significantly enriched in IAC-derived exosomes (>30% miRNome), which partially mediates IACs' suppressive impacts on PSCs. Furthermore, it has been observed that the enrichment of let-7 in exosomes was influenced by the expression level of KLF4. Mechanistic studies demonstrated that KLF4 in ACs upregulated Lin28A, thereby decreasing let-7 levels in AC-derived exosomes, and thus promoting PSCs activation. We utilized an adeno-associated virus specifically targeting KLF4 in ACs (shKLF4-pAAV) to suppress PSCs activation in CP, resulting in reduced pancreatic fibrosis. IAC-derived exosomes hold potential as potent weapons against PSCs activation via let-7s, while activated KLF4/Lin28A signaling in DACs diminished such functions. ShKLF4-pAAV holds promise as a novel therapeutic approach for CP.


Asunto(s)
Células Acinares , Exosomas , Fibrosis , Factor 4 Similar a Kruppel , MicroARNs , Células Estrelladas Pancreáticas , Pancreatitis Crónica , Factor 4 Similar a Kruppel/metabolismo , Animales , Células Estrelladas Pancreáticas/metabolismo , Células Estrelladas Pancreáticas/patología , Exosomas/metabolismo , Pancreatitis Crónica/metabolismo , Pancreatitis Crónica/genética , Pancreatitis Crónica/patología , MicroARNs/genética , Células Acinares/metabolismo , Células Acinares/patología , Dependovirus/genética , Ratones , Humanos , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Modelos Animales de Enfermedad , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Masculino , Técnicas de Cocultivo , Páncreas/metabolismo , Páncreas/patología , Terapia Genética/métodos
8.
Mol Cell ; 65(3): 490-503.e7, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28132840

RESUMEN

Environmental cues provoke rapid transitions in gene expression to support growth and cellular plasticity through incompletely understood mechanisms. Lin28 RNA-binding proteins have evolutionarily conserved roles in post-transcriptional coordination of pro-growth gene expression, but signaling pathways allowing trophic stimuli to induce Lin28 have remained uncharacterized. We find that Lin28a protein exhibits rapid basal turnover in neurons and that mitogen-activated protein kinase (MAPK)-dependent phosphorylation of the RNA-silencing factor HIV TAR-RNA-binding protein (TRBP) promotes binding and stabilization of Lin28a, but not Lin28b, with an accompanying reduction in Lin28-regulated miRNAs, downstream of brain-derived neurotrophic factor (BDNF). Binding of Lin28a to TRBP in vitro is also enhanced by phospho-mimic TRBP. Further, phospho-TRBP recapitulates BDNF-induced neuronal dendritic spine growth in a Lin28a-dependent manner. Finally, we demonstrate MAPK-dependent TRBP and Lin28a induction, with physiological function in growth and survival, downstream of diverse growth factors in multiple primary cell types, supporting a broad role for this pathway in trophic responses.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Células HEK293 , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Humanos , Macrófagos Peritoneales/citología , Macrófagos Peritoneales/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación
9.
Cell Mol Life Sci ; 81(1): 53, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261114

RESUMEN

The human let-7 miRNA family consists of thirteen members that play critical roles in many biological processes, including development timing and tumor suppression, and their levels are disrupted in several diseases. Dicer is the endoribonuclease responsible for processing the precursor miRNA (pre-miRNA) to yield the mature miRNA, and thereby plays a crucial role in controlling the cellular levels of let-7 miRNAs. It is well established that the sequence and structural features of pre-miRNA hairpins such as the 5'-phosphate, the apical loop, and the 2-nt 3'-overhang are important for the processing activity of Dicer. Exceptionally, nine precursors of the let-7 family (pre-let-7) contain a 1-nt 3'-overhang and get mono-uridylated in vivo, presumably to allow efficient processing by Dicer. Pre-let-7 are also oligo-uridylated in vivo to promote their degradation and likely prevent their efficient processing by Dicer. In this study, we systematically investigated the impact of sequence and structural features of all human let-7 pre-miRNAs, including their 3'-end modifications, on Dicer binding and processing. Through the combination of SHAPE structural probing, in vitro binding and kinetic studies using purified human Dicer, we show that despite structural discrepancies among pre-let-7 RNAs, Dicer exhibits remarkable promiscuity in binding and cleaving these substrates. Moreover, the 1- or 2-nt 3'-overhang, 3'-mono-uridylation, and 3'-oligo-uridylation of pre-let-7 substrates appear to have little effect on Dicer binding and cleavage rates. Thus, this study extends current knowledge regarding the broad substrate specificity of Dicer and provides novel insight regarding the effect of 3'-modifications on binding and cleavage by Dicer.


Asunto(s)
ARN Helicasas DEAD-box , MicroARNs , Ribonucleasa III , Humanos , Cinética , MicroARNs/genética , Fosfatos , Especificidad por Sustrato , ARN Helicasas DEAD-box/genética , Ribonucleasa III/genética
10.
Cell Mol Life Sci ; 81(1): 54, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38261036

RESUMEN

In embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), the expression of an RNA-binding pluripotency-relevant protein, LIN28, and the absence of its antagonist, the tumor-suppressor microRNA (miRNA) let-7, play a key role in maintaining pluripotency. Muse cells are non-tumorigenic pluripotent-like stem cells residing in the bone marrow, peripheral blood, and organ connective tissues as pluripotent surface marker SSEA-3(+). They express pluripotency genes, differentiate into triploblastic-lineage cells, and self-renew at the single cell level. Muse cells do not express LIN28 but do express let-7 at higher levels than in iPSCs. In Muse cells, we demonstrated that let-7 inhibited the PI3K-AKT pathway, leading to sustainable expression of the key pluripotency regulator KLF4 as well as its downstream genes, POU5F1, SOX2, and NANOG. Let-7 also suppressed proliferation and glycolysis by inhibiting the PI3K-AKT pathway, suggesting its involvement in non-tumorigenicity. Furthermore, the MEK/ERK pathway is not controlled by let-7 and may have a pivotal role in maintaining self-renewal and suppression of senescence. The system found in Muse cells, in which the tumor suppressor let-7, but not LIN28, tunes the expression of pluripotency genes, might be a rational cell system conferring both pluripotency-like properties and a low risk for tumorigenicity.


Asunto(s)
Alprostadil , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt , Células Madre Embrionarias , Expresión Génica
11.
Proc Natl Acad Sci U S A ; 119(14): e2122217119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35344434

RESUMEN

SignificanceA clear mechanistic understanding of metformin's antidiabetic effects is lacking. This is because suprapharmacological concentrations of metformin have been used in most studies. Using mouse models and human primary hepatocytes, we show that metformin, at clinically relevant doses, suppresses hepatic glucose production by activating a conserved regulatory pathway encompassing let-7, TET3, and a fetal isoform of hepatocyte nuclear factor 4 alpha (HNF4α). We demonstrate that metformin no longer has potent antidiabetic actions in a liver-specific let-7 loss-of-function mouse model and that hepatic delivery of let-7 ameliorates hyperglycemia and improves glucose homeostasis. Our results thus reveal an important role of the hepatic let-7/TET3/HNF4α axis in mediating the therapeutic effects of metformin and suggest that targeting this axis may be a potential therapeutic for diabetes.


Asunto(s)
Hiperglucemia , Metformina , Animales , Modelos Animales de Enfermedad , Glucosa/metabolismo , Hepatocitos/metabolismo , Hiperglucemia/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Metformina/uso terapéutico , Ratones
12.
Proc Natl Acad Sci U S A ; 119(45): e2210053119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322763

RESUMEN

Choreographic dendritic arborization takes place within a defined time frame, but the timing mechanism is currently not known. Here, we report that the precisely timed lin-4-lin-14 regulatory circuit triggers an initial dendritic growth activity, whereas the precisely timed lin-28-let-7-lin-41 regulatory circuit signals a subsequent developmental decline in dendritic growth ability, hence restricting dendritic arborization within a set time frame. Loss-of-function mutations in the lin-4 microRNA gene cause limited dendritic outgrowth, whereas loss-of-function mutations in its direct target, the lin-14 transcription factor gene, cause precocious and excessive outgrowth. In contrast, loss-of-function mutations in the let-7 microRNA gene prevent a developmental decline in dendritic growth ability, whereas loss-of-function mutations in its direct target, the lin-41 tripartite motif protein gene, cause further decline. lin-4 and let-7 regulatory circuits are expressed in the right place at the right time to set start and end times for dendritic arborization. Replacing the lin-4 upstream cis-regulatory sequence at the lin-4 locus with a late-onset let-7 upstream cis-regulatory sequence delays dendrite arborization, whereas replacing the let-7 upstream cis-regulatory sequence at the let-7 locus with an early-onset lin-4 upstream cis-regulatory sequence causes a precocious decline in dendritic growth ability. Our results indicate that the lin-4-lin-14 and the lin-28-let-7-lin-41 regulatory circuits control the timing of dendrite arborization through antagonistic regulation of the DMA-1 receptor level on dendrites. The LIN-14 transcription factor likely directly represses dma-1 gene expression through a transcriptional means, whereas the LIN-41 tripartite motif protein likely indirectly promotes dma-1 gene expression through a posttranscriptional means.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación del Desarrollo de la Expresión Génica , Nociceptores/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Motivos Tripartitos/genética , Plasticidad Neuronal , Proteínas Represoras/metabolismo , Proteínas de la Membrana/metabolismo
13.
Genes Dev ; 31(7): 674-687, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28446596

RESUMEN

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression critical for organismal viability. Changes in miRNA activity are common in cancer, but how these changes relate to subsequent alterations in transcription and the process of tumorigenesis is not well understood. Here, we report a deep transcriptional, oncogenic network regulated by miRNAs. We present analysis of the gene expression and phenotypic changes associated with global miRNA restoration in miRNA-deficient fibroblasts. This analysis uncovers a miRNA-repressed network containing oncofetal genes Imp1, Imp2, and Imp3 (Imp1-3) that is up-regulated primarily transcriptionally >100-fold upon Dicer loss and is resistant to resilencing by complete restoration of miRNA activity. This Dicer-resistant epigenetic switch confers tumorigenicity to these cells. Let-7 targets Imp1-3 are required for this tumorigenicity and feed back to reinforce and sustain expression of the oncogenic network. Together, these Dicer-resistant genes constitute an mRNA expression signature that is present in numerous human cancers and is associated with poor survival.


Asunto(s)
Antígenos de Neoplasias/genética , Transformación Celular Neoplásica/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/fisiología , MicroARNs/genética , Ribonucleasa III/genética , Ribonucleasa III/fisiología , Animales , Antígenos de Neoplasias/metabolismo , Células Cultivadas , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Oncogenes , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional
14.
Genes Chromosomes Cancer ; 63(9): e23272, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39324493

RESUMEN

RUNX1 fuses with over 70 different partner genes in hematological neoplasms. While common RUNX1 chimeras have been extensively studied and their prognosis is well established, our current understanding of less common RUNX1 chimeras is limited. Here, we present a case of acute myeloid leukemia (AML) with a rare RUNX1 chimera. Bone marrow cells obtained at diagnosis from a 71-year-old patient diagnosed with AML-M5 were studied using G-banding, fluorescence in situ hybridization, array comparative genomic hybridization, RNA sequencing, PCR, and Sanger sequencing. Combined findings from the abovementioned assays suggested three cytogenetic clones: one with a normal karyotype, one with inv(21)(q21q22), and one with two inv(21)(q21q22). The molecular analysis revealed the fusion of RUNX1 with MIR99AHG (at 21q21.1), further supporting the presence of an inv(21)(q21q22). The present case is the third reported AML harboring a RUNX1::MIR99AHG chimera. Similar to the two previously described AML patients, our case also had an FLT3 aberration.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia Mieloide Aguda , Proteínas de Fusión Oncogénica , Anciano , Humanos , Masculino , Cromosomas Humanos Par 21/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , MicroARNs/genética , Proteínas de Fusión Oncogénica/genética
15.
Genes Chromosomes Cancer ; 63(8): e23262, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39120141

RESUMEN

BACKGROUND: Cellular angiofibroma, a rare benign mesenchymal neoplasm, is classified within the 13q/RB1 family of tumors due to morphological, immunohistochemical, and genetic similarities with spindle cell lipoma. Here, genetic data reveal pathogenetic heterogeneity in cellular angiofibroma. METHODS: Three cellular angiofibromas were studied using G-banding/Karyotyping, array comparative genomic hybridization, RNA sequencing, and direct cycling sequencing. RESULTS: The first tumor carried a del(13)(q12) together with heterozygous loss and minimal expression of the RB1 gene. Tumors two and three displayed chromosome 8 abnormalities associated with chimeras of the pleomorphic adenoma gene 1 (PLAG1). In tumor 2, the cathepsin B (CTSB) fused to PLAG1 (CTSB::PLAG1) while in tumor 3, the mir-99a-let-7c cluster host gene (MIR99AHG) fused to PLAG1 (MIR99AHG::PLAG1), both leading to elevated expression of PLAG1 and insulin growth factor 2. CONCLUSION: This study uncovers two genetic pathways contributing to the pathogenetic heterogeneity within cellular angiofibromas. The first aligns with the 13q/RB1 family of tumors and the second involves PLAG1-chimeras. These findings highlight the diverse genetic landscape of cellular angiofibromas, providing insights into potential diagnostic strategies.


Asunto(s)
Angiofibroma , Cromosomas Humanos Par 13 , Heterogeneidad Genética , Humanos , Angiofibroma/genética , Angiofibroma/patología , Masculino , Cromosomas Humanos Par 13/genética , Proteínas de Unión al ADN/genética , Adulto , Femenino , Proteínas de Unión a Retinoblastoma/genética , MicroARNs/genética , Ubiquitina-Proteína Ligasas/genética , Persona de Mediana Edad , Hibridación Genómica Comparativa , Cromosomas Humanos Par 8/genética , Catepsina B
16.
J Cell Biochem ; : e30629, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004898

RESUMEN

The current treatment of skin fibrosis is limited in its effectiveness due to a lack of understanding of the underlying mechanisms. Previous research has shown a connection between microRNAs (miRNAs) and the development of skin fibrosis. Therefore, investigating miRNA for the treatment of skin fibrotic diseases is highly important and merits further exploration. In this study, we have discovered that let-7f-5p could suppress the proliferation, migration, and expression of collagen type I alpha 1 (COL1A1) in human dermal fibroblasts (HDFs). It was further determined that let-7f-5p could target thrombospondin-1 (THBS1), thereby inhibiting the TGF-ß2/Smad3 signaling pathway and exerting its biological effects. Additionally, let-7f-5p is regulated by Hsa_circ_0000437, which acts as a sponge molecule for let-7f-5p and consequently regulates the biological function of HDFs. Furthermore, our findings indicate that in vivo overexpression of let-7f-5p leads to a reduction in dermal thickness and COL1A1 expression, effectively inhibiting the progression of bleomycin (BLM)-induced skin fibrosis in mice. Hence, our research enhances the comprehension of the Hsa_circ_0000437/let-7f-5p/THBS1/TGF-ß2/Smad3 regulatory network, highlighting the potential of let-7f-5p as a therapeutic approach for the treatment of skin fibrosis.

17.
EMBO J ; 39(20): e104708, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32926445

RESUMEN

Let-7 is an evolutionary conserved microRNA that mediates post-transcriptional gene silencing to regulate a wide range of biological processes, including development, differentiation, and tumor suppression. Let-7 biogenesis is tightly regulated by several RNA-binding proteins, including Lin28A/B, which represses let-7 maturation. To identify new regulators of let-7, we devised a cell-based functional screen of RNA-binding proteins using a let-7 sensor luciferase reporter and identified the tRNA pseudouridine synthase, TruB1. TruB1 enhanced maturation specifically of let-7 family members. Rather than inducing pseudouridylation of the miRNAs, high-throughput sequencing crosslinking immunoprecipitation (HITS-CLIP) and biochemical analyses revealed direct binding between endogenous TruB1 and the stem-loop structure of pri-let-7, which also binds Lin28A/B. TruB1 selectively enhanced the interaction between pri-let-7 and the microprocessor DGCR8, which mediates miRNA maturation. Finally, TruB1 suppressed cell proliferation, which was mediated in part by let-7. Altogether, we reveal an unexpected function for TruB1 in promoting let-7 maturation.


Asunto(s)
Proliferación Celular/genética , Transferasas Intramoleculares/metabolismo , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Línea Celular Tumoral , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Transferasas Intramoleculares/genética , MicroARNs/genética , Unión Proteica , Proteínas Recombinantes
18.
Biochem Biophys Res Commun ; 721: 150122, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38776834

RESUMEN

Let-7 was one of the first microRNAs (miRNAs) to be discovered and its expression promotes differentiation during development and function as tumor suppressors in various cancers. The maturation process of let-7 miRNA is tightly regulated by multiple RNA-binding proteins. For example, LIN28 binds to the terminal loops of the precursors of let-7 family and block their processing into mature miRNAs. Trim25 promotes the uridylation-mediated degradation of pre-let-7 modified by LIN28/TUT4. Recently, human pseudouridine synthase TruB1 has been reported to facilitate let-7 maturation by directly binding to pri-let-7 and recruiting Drosha-DGCR8 microprocessor. Through biochemical assay and structural investigation, we show that human TruB1 binds specifically the terminal loop of pri-let-7a1 at nucleotides 31-41, which folds as a small stem-loop architecture. Although TruB1 recognizes the terminal loop of pri-let-7a1 in a way similar to how E. coli TruB interacts with tRNA, a conserved KRKK motif in human and other higher eukaryotes adds an extra binding interface and strengthens the recognition of TruB1 for pri-let-7a1 through electrostatic interactions. These findings reveal the structural basis of TruB1-pri-let-7 interaction which may assists the elucidation of precise role of TruB1 in biogenesis of let-7.


Asunto(s)
MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Unión Proteica , Modelos Moleculares , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Conformación de Ácido Nucleico , Sitios de Unión , Secuencia de Aminoácidos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
19.
Cancer Immunol Immunother ; 73(5): 80, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38554167

RESUMEN

Cancer immunotherapy has seen significant success in the last decade for cancer management by enhancing endogenous cancer immunity. However, immunotherapies developed thus far have seen limited success in the majority of high-grade serous carcinoma (HGSC) ovarian cancer patients. This is largely due to the highly immunosuppressive tumour microenvironment of HGSC and late-stage identification. Thus, novel treatment interventions are needed to overcome this immunosuppression and complement existing immunotherapies. Here, we have identified through analysis of > 600 human HGSC tumours a critical role for Let-7i in modulating the tumoural immune network. Tumoural expression of Let-7i had high positive correlation with anti-cancer immune signatures in HGSC patients. Confirming this role, enforced Let-7i expression in murine HGSC tumours resulted in a significant decrease in tumour burden with a significant increase in tumour T cell numbers in tumours. In concert with the improved tumoural immunity, Let-7i treatment also significantly increased CD86 expression in antigen presenting cells (APCs) in the draining lymph nodes, indicating enhanced APC activity. Collectively, our findings highlight an important role of Let-7i in anti-tumour immunity and its potential use for inducing an anti-tumour effect in HGSC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , MicroARNs/genética , Neoplasias Ováricas/patología , Linfocitos T/metabolismo , Microambiente Tumoral
20.
RNA ; 28(3): 353-370, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949722

RESUMEN

The human terminal uridyl transferases TUT4 and TUT7 (TUT4/7) catalyze the additions of uridines at the 3' end of RNAs, including the precursors of the tumor suppressor miRNA let-7 upon recruitment by the oncoprotein LIN28A. As a consequence, let-7 family miRNAs are down-regulated. Disruption of this TUT4/7 activity inhibits tumorigenesis. Hence, targeting TUT4/7 could be a potential anticancer therapy. In this study, we investigate TUT4/7-mediated RNA regulation in two cancer cell lines by establishing catalytic knockout models. Upon TUT4/7 mutation, we observe a significant reduction in miRNA uridylation, which results in defects in cancer cell properties such as cell proliferation and migration. With the loss of TUT4/7-mediated miRNA uridylation, the uridylated miRNA variants are replaced by adenylated isomiRs. Changes in miRNA modification profiles are accompanied by deregulation of expression levels in specific cases. Unlike let-7s, most miRNAs do not depend on LIN28A for TUT4/7-mediated regulation. Additionally, we identify TUT4/7-regulated cell-type-specific miRNA clusters and deregulation in their corresponding mRNA targets. Expression levels of miR-200c-3p and miR-141-3p are regulated by TUT4/7 in a cancer cell-type-specific manner. Subsequently, BCL2, which is a well-established target of miR-200c is up-regulated. Therefore, TUT4/7 loss causes deregulation of miRNA-mRNA networks in a cell-type-specific manner. Understanding of the underlying biology of such cell-type-specific deregulation will be an important aspect of targeting TUT4/7 for potential cancer therapies.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias/metabolismo , ARN Nucleotidiltransferasas/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , MicroARNs/genética , Neoplasias/genética , ARN Nucleotidiltransferasas/genética , Procesamiento Postranscripcional del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA