Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.525
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(19): 5316-5335.e28, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39096902

RESUMEN

Neutrophils are sentinel immune cells with essential roles for antimicrobial defense. Most of our knowledge on neutrophil tissue navigation derived from wounding and infection models, whereas allergic conditions remained largely neglected. Here, we analyzed allergen-challenged mouse tissues and discovered that degranulating mast cells (MCs) trap living neutrophils inside them. MCs release the attractant leukotriene B4 to re-route neutrophils toward them, thus exploiting a chemotactic system that neutrophils normally use for intercellular communication. After MC intracellular trap (MIT) formation, neutrophils die, but their undigested material remains inside MC vacuoles over days. MCs benefit from MIT formation, increasing their functional and metabolic fitness. Additionally, they are more pro-inflammatory and can exocytose active neutrophilic compounds with a time delay (nexocytosis), eliciting a type 1 interferon response in surrounding macrophages. Together, our study highlights neutrophil trapping and nexocytosis as MC-mediated processes, which may relay neutrophilic features over the course of chronic allergic inflammation.


Asunto(s)
Inflamación , Mastocitos , Ratones Endogámicos C57BL , Neutrófilos , Animales , Mastocitos/metabolismo , Mastocitos/inmunología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones , Inflamación/metabolismo , Inflamación/inmunología , Inflamación/patología , Leucotrieno B4/metabolismo , Transducción de Señal , Degranulación de la Célula , Macrófagos/metabolismo , Macrófagos/inmunología , Trampas Extracelulares/metabolismo , Masculino , Femenino
2.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38723627

RESUMEN

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Asunto(s)
Linfocitos T CD8-positivos , Inmunoterapia , Linfocitos Infiltrantes de Tumor , Ratones Endogámicos C57BL , Microambiente Tumoral , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Relojes Circadianos , Ritmo Circadiano , Células Endoteliales/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/inmunología , Melanoma/terapia , Melanoma/patología , Microambiente Tumoral/inmunología
3.
Cell ; 172(3): 549-563.e16, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29275860

RESUMEN

The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of "orphan" T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile indentification of tumor antigens through unbiased screening.


Asunto(s)
Adenocarcinoma/inmunología , Antígenos de Neoplasias/inmunología , Neoplasias Colorrectales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Anciano , Animales , Antígenos de Neoplasias/química , Línea Celular Tumoral , Células Cultivadas , Células HEK293 , Antígenos HLA-A/química , Antígenos HLA-A/inmunología , Humanos , Masculino , Persona de Mediana Edad , Biblioteca de Péptidos , Células Sf9 , Spodoptera
4.
Cell ; 173(7): 1755-1769.e22, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29754820

RESUMEN

High-grade serous ovarian cancer (HGSC) exhibits extensive malignant clonal diversity with widespread but non-random patterns of disease dissemination. We investigated whether local immune microenvironment factors shape tumor progression properties at the interface of tumor-infiltrating lymphocytes (TILs) and cancer cells. Through multi-region study of 212 samples from 38 patients with whole-genome sequencing, immunohistochemistry, histologic image analysis, gene expression profiling, and T and B cell receptor sequencing, we identified three immunologic subtypes across samples and extensive within-patient diversity. Epithelial CD8+ TILs negatively associated with malignant diversity, reflecting immunological pruning of tumor clones inferred by neoantigen depletion, HLA I loss of heterozygosity, and spatial tracking between T cell and tumor clones. In addition, combinatorial prognostic effects of mutational processes and immune properties were observed, illuminating how specific genomic aberration types associate with immune response and impact survival. We conclude that within-patient spatial immune microenvironment variation shapes intraperitoneal malignant spread, provoking new evolutionary perspectives on HGSC clonal dispersion.


Asunto(s)
Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias Ováricas/patología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Antígenos CD8/metabolismo , Análisis por Conglomerados , Femenino , Antígenos HLA/genética , Antígenos HLA/metabolismo , Humanos , Pérdida de Heterocigocidad , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Clasificación del Tumor , Neoplasias Ováricas/clasificación , Neoplasias Ováricas/inmunología , Polimorfismo de Nucleótido Simple , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Secuenciación Completa del Genoma , Adulto Joven
5.
Immunity ; 56(10): 2311-2324.e6, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37643615

RESUMEN

Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.


Asunto(s)
Migración Transendotelial y Transepitelial , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Animales , Ratones , Adhesión Celular , Movimiento Celular , Endotelio Vascular , Mecanotransducción Celular , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
Immunity ; 56(6): 1410-1428.e8, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37257450

RESUMEN

Although host responses to the ancestral SARS-CoV-2 strain are well described, those to the new Omicron variants are less resolved. We profiled the clinical phenomes, transcriptomes, proteomes, metabolomes, and immune repertoires of >1,000 blood cell or plasma specimens from SARS-CoV-2 Omicron patients. Using in-depth integrated multi-omics, we dissected the host response dynamics during multiple disease phases to reveal the molecular and cellular landscapes in the blood. Specifically, we detected enhanced interferon-mediated antiviral signatures of platelets in Omicron-infected patients, and platelets preferentially formed widespread aggregates with leukocytes to modulate immune cell functions. In addition, patients who were re-tested positive for viral RNA showed marked reductions in B cell receptor clones, antibody generation, and neutralizing capacity against Omicron. Finally, we developed a machine learning model that accurately predicted the probability of re-positivity in Omicron patients. Our study may inspire a paradigm shift in studying systemic diseases and emerging public health concerns.


Asunto(s)
Plaquetas , COVID-19 , Humanos , SARS-CoV-2 , Infección Irruptiva , Multiómica , Anticuerpos Neutralizantes , Anticuerpos Antivirales
7.
Cell ; 171(6): 1272-1283.e15, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29107334

RESUMEN

MHC-I molecules expose the intracellular protein content on the cell surface, allowing T cells to detect foreign or mutated peptides. The combination of six MHC-I alleles each individual carries defines the sub-peptidome that can be effectively presented. We applied this concept to human cancer, hypothesizing that oncogenic mutations could arise in gaps in personal MHC-I presentation. To validate this hypothesis, we developed and applied a residue-centric patient presentation score to 9,176 cancer patients across 1,018 recurrent oncogenic mutations. We found that patient MHC-I genotype-based scores could predict which mutations were more likely to emerge in their tumor. Accordingly, poor presentation of a mutation across patients was correlated with higher frequency among tumors. These results support that MHC-I genotype-restricted immunoediting during tumor formation shapes the landscape of oncogenic mutations observed in clinically diagnosed tumors and paves the way for predicting personal cancer susceptibilities from knowledge of MHC-I genotype.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Mutación , Neoplasias/inmunología , Línea Celular Tumoral , Simulación por Computador , Femenino , Células HeLa , Humanos , Masculino , Monitorización Inmunológica , Proteoma
8.
Immunity ; 55(1): 56-64.e4, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34986342

RESUMEN

We evaluated the impact of class I and class II human leukocyte antigen (HLA) genotypes, heterozygosity, and diversity on the efficacy of pembrolizumab. Seventeen pembrolizumab clinical trials across eight tumor types and one basket trial in patients with advanced solid tumors were included (n > 3,500 analyzed). Germline DNA was genotyped using a custom genotyping array. HLA diversity (measured by heterozygosity and evolutionary divergence) across class I loci was not associated with improved response to pembrolizumab, either within each tumor type evaluated or across all patients. Similarly, HLA heterozygosity at each class I and class II gene was not associated with response to pembrolizumab after accounting for the number of tests conducted. No conclusive association between HLA genotype and response to pembrolizumab was identified in this dataset. Germline HLA genotype or diversity alone is not an important independent determinant of response to pembrolizumab and should not be used for clinical decision-making in patients treated with pembrolizumab.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Genotipo , Mutación de Línea Germinal/genética , Antígenos HLA/genética , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Factores de Edad , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/mortalidad , Polimorfismo Genético , Pronóstico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Factores Sexuales , Análisis de Supervivencia , Resultado del Tratamiento
9.
Mol Cell ; 82(14): 2557-2570.e7, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35594857

RESUMEN

Antigen presentation by the human leukocyte antigen (HLA) on the cell surface is critical for the transduction of the immune signal toward cytotoxic T lymphocytes. DNA damage upregulates HLA class I presentation; however, the mechanism is unclear. Here, we show that DNA-damage-induced HLA (di-HLA) presentation requires an immunoproteasome, PSMB8/9/10, and antigen-transporter, TAP1/2, demonstrating that antigen production is essential. Furthermore, we show that di-HLA presentation requires ATR, AKT, mTORC1, and p70-S6K signaling. Notably, the depletion of CBP20, a factor initiating the pioneer round of translation (PRT) that precedes nonsense-mediated mRNA decay (NMD), abolishes di-HLA presentation, suggesting that di-antigen production requires PRT. RNA-seq analysis demonstrates that DNA damage reduces NMD transcripts in an ATR-dependent manner, consistent with the requirement for ATR in the initiation of PRT/NMD. Finally, bioinformatics analysis identifies that PRT-derived 9-mer peptides bind to HLA and are potentially immunogenic. Therefore, DNA damage signaling produces immunogenic antigens by utilizing the machinery of PRT/NMD.


Asunto(s)
Degradación de ARNm Mediada por Codón sin Sentido , Biosíntesis de Proteínas , Presentación de Antígeno , Daño del ADN , Antígenos de Histocompatibilidad Clase I/genética , Humanos
10.
Immunity ; 51(3): 561-572.e5, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31402260

RESUMEN

Lymphatic vessels form a critical component in the regulation of human health and disease. While their functional significance is increasingly being recognized, the comprehensive heterogeneity of lymphatics remains uncharacterized. Here, we report the profiling of 33,000 lymphatic endothelial cells (LECs) in human lymph nodes (LNs) by single-cell RNA sequencing. Unbiased clustering revealed six major types of human LECs. LECs lining the subcapsular sinus (SCS) of LNs abundantly expressed neutrophil chemoattractants, whereas LECs lining the medullary sinus (MS) expressed a C-type lectin CD209. Binding of a carbohydrate Lewis X (CD15) to CD209 mediated neutrophil binding to the MS. The neutrophil-selective homing by MS LECs may retain neutrophils in the LN medulla and allow lymph-borne pathogens to clear, preventing their spread through LNs in humans. Our study provides a comprehensive characterization of LEC heterogeneity and unveils a previously undefined role for medullary LECs in human immunity.


Asunto(s)
Células Endoteliales/inmunología , Neutrófilos/inmunología , Animales , Moléculas de Adhesión Celular/inmunología , Células Cultivadas , Humanos , Lectinas Tipo C/inmunología , Antígeno Lewis X/inmunología , Ganglios Linfáticos/inmunología , Vasos Linfáticos/inmunología , Ratones Endogámicos C57BL , Receptores de Superficie Celular/inmunología , Encuestas y Cuestionarios
11.
Immunol Rev ; 325(1): 90-106, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38867408

RESUMEN

Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.


Asunto(s)
Artritis Reumatoide , Autoinmunidad , Disbiosis , Microbioma Gastrointestinal , Artritis Reumatoide/inmunología , Artritis Reumatoide/terapia , Artritis Reumatoide/etiología , Humanos , Microbioma Gastrointestinal/inmunología , Animales , Disbiosis/inmunología , Modelos Animales de Enfermedad , Ratones , Antígeno HLA-DR4/inmunología , Antígeno HLA-DR4/genética , Antígenos HLA-DQ/inmunología , Antígenos HLA-DQ/genética
12.
Am J Hum Genet ; 111(1): 181-199, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181733

RESUMEN

Human humoral immune responses to SARS-CoV-2 vaccines exhibit substantial inter-individual variability and have been linked to vaccine efficacy. To elucidate the underlying mechanism behind this variability, we conducted a genome-wide association study (GWAS) on the anti-spike IgG serostatus of UK Biobank participants who were previously uninfected by SARS-CoV-2 and had received either the first dose (n = 54,066) or the second dose (n = 46,232) of COVID-19 vaccines. Our analysis revealed significant genome-wide associations between the IgG antibody serostatus following the initial vaccine and human leukocyte antigen (HLA) class II alleles. Specifically, the HLA-DRB1∗13:02 allele (MAF = 4.0%, OR = 0.75, p = 2.34e-16) demonstrated the most statistically significant protective effect against IgG seronegativity. This protective effect was driven by an alteration from arginine (Arg) to glutamic acid (Glu) at position 71 on HLA-DRß1 (p = 1.88e-25), leading to a change in the electrostatic potential of pocket 4 of the peptide binding groove. Notably, the impact of HLA alleles on IgG responses was cell type specific, and we observed a shared genetic predisposition between IgG status and susceptibility/severity of COVID-19. These results were replicated within independent cohorts where IgG serostatus was assayed by two different antibody serology tests. Our findings provide insights into the biological mechanism underlying individual variation in responses to COVID-19 vaccines and highlight the need to consider the influence of constitutive genetics when designing vaccination strategies for optimizing protection and control of infectious disease across diverse populations.


Asunto(s)
COVID-19 , Inmunoglobulina G , Humanos , Formación de Anticuerpos/genética , Vacunas contra la COVID-19 , Estudio de Asociación del Genoma Completo , COVID-19/genética , COVID-19/prevención & control , SARS-CoV-2 , Vacunación
13.
Immunity ; 49(6): 1175-1190.e7, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30527911

RESUMEN

The number of leukocytes present in circulation varies throughout the day, reflecting bone marrow output and emigration from blood into tissues. Using an organism-wide circadian screening approach, we detected oscillations in pro-migratory factors that were distinct for specific vascular beds and individual leukocyte subsets. This rhythmic molecular signature governed time-of-day-dependent homing behavior of leukocyte subsets to specific organs. Ablation of BMAL1, a transcription factor central to circadian clock function, in endothelial cells or leukocyte subsets demonstrated that rhythmic recruitment is dependent on both microenvironmental and cell-autonomous oscillations. These oscillatory patterns defined leukocyte trafficking in both homeostasis and inflammation and determined detectable tumor burden in blood cancer models. Rhythms in the expression of pro-migratory factors and migration capacities were preserved in human primary leukocytes. The definition of spatial and temporal expression profiles of pro-migratory factors guiding leukocyte migration patterns to organs provides a resource for the further study of the impact of circadian rhythms in immunity.


Asunto(s)
Movimiento Celular/inmunología , Ritmo Circadiano/inmunología , Regulación de la Expresión Génica/inmunología , Leucocitos/inmunología , Factores de Transcripción/inmunología , Adulto , Animales , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Movimiento Celular/genética , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Homeostasis/genética , Homeostasis/inmunología , Humanos , Leucocitos/citología , Leucocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Trends Biochem Sci ; 47(3): 265-278, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34872819

RESUMEN

Cell adhesion is essential for the formation of organs, cellular migration, and interaction with target cells and the extracellular matrix. Integrins are large protein α/ß-chain heterodimers and form a major family of cell adhesion molecules. Recent research has dramatically increased our knowledge of how integrin phosphorylations regulate integrin activity. Phosphorylations determine the signaling complexes formed on the cytoplasmic tails, regulating downstream signaling. α-Chain phosphorylation is necessary for inducing ß-chain phosphorylation in LFA-1, and the crosstalk from one integrin to another activating or inactivating its function is in part mediated by phosphorylation of ß-chains. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus receptor angiotensin-converting enzyme 2 (ACE2) and possible integrin coreceptors may crosstalk and induce a phosphorylation switch and autophagy.


Asunto(s)
COVID-19 , Integrinas , Adhesión Celular , Humanos , Integrinas/metabolismo , Fosforilación , SARS-CoV-2
15.
Hum Mol Genet ; 33(14): 1262-1272, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38676403

RESUMEN

BACKGROUND: Genetic susceptibility to various chronic diseases has been shown to influence heart failure (HF) risk. However, the underlying biological pathways, particularly the role of leukocyte telomere length (LTL), are largely unknown. We investigated the impact of genetic susceptibility to chronic diseases and various traits on HF risk, and whether LTL mediates or modifies the pathways. METHODS: We conducted prospective cohort analyses on 404 883 European participants from the UK Biobank, including 9989 incident HF cases. Multivariable Cox regression was used to estimate associations between HF risk and 24 polygenic risk scores (PRSs) for various diseases or traits previously generated using a Bayesian approach. We assessed multiplicative interactions between the PRSs and LTL previously measured in the UK Biobank using quantitative PCR. Causal mediation analyses were conducted to estimate the proportion of the total effect of PRSs acting indirectly through LTL, an integrative marker of biological aging. RESULTS: We identified 9 PRSs associated with HF risk, including those for various cardiovascular diseases or traits, rheumatoid arthritis (P = 1.3E-04), and asthma (P = 1.8E-08). Additionally, longer LTL was strongly associated with decreased HF risk (P-trend = 1.7E-08). Notably, LTL strengthened the asthma-HF relationship significantly (P-interaction = 2.8E-03). However, LTL mediated only 1.13% (P < 0.001) of the total effect of the asthma PRS on HF risk. CONCLUSIONS: Our findings shed light onto the shared genetic susceptibility between HF risk, asthma, rheumatoid arthritis, and other traits. Longer LTL strengthened the genetic effect of asthma in the pathway to HF. These results support consideration of LTL and PRSs in HF risk prediction.


Asunto(s)
Predisposición Genética a la Enfermedad , Insuficiencia Cardíaca , Leucocitos , Telómero , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/epidemiología , Femenino , Leucocitos/metabolismo , Masculino , Persona de Mediana Edad , Telómero/genética , Enfermedad Crónica , Anciano , Estudios Prospectivos , Homeostasis del Telómero/genética , Factores de Riesgo , Polimorfismo de Nucleótido Simple , Adulto , Herencia Multifactorial/genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Pueblo Europeo
16.
Development ; 150(15)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37522363

RESUMEN

Xenopus laevis tadpoles can regenerate whole tails after amputation. We have previously reported that interleukin 11 (il11) is required for tail regeneration. In this study, we have screened for genes that support tail regeneration under Il11 signaling in a certain cell type and have identified the previously uncharacterized genes Xetrov90002578m.L and Xetrov90002579m.S [referred to hereafter as regeneration factors expressed on myeloid.L (rfem.L) and rfem.S]. Knockdown (KD) of rfem.L and rfem.S causes defects of tail regeneration, indicating that rfem.L and/or rfem.S are required for tail regeneration. Single-cell RNA sequencing (scRNA-seq) revealed that rfem.L and rfem.S are expressed in a subset of leukocytes with a macrophage-like gene expression profile. KD of colony-stimulating factor 1 (csf1), which is essential for macrophage differentiation and survival, reduced rfem.L and rfem.S expression levels and the number of rfem.L- and rfem.S-expressing cells in the regeneration bud. Furthermore, forced expression of rfem.L under control of the mpeg1 promoter, which drives rfem.L in macrophage-like cells, rescues rfem.L and rfem.S KD-induced tail regeneration defects. Our findings suggest that rfem.L or rfem.S expression in macrophage-like cells is required for tail regeneration.


Asunto(s)
Interleucina-11 , Transducción de Señal , Animales , Xenopus laevis/genética , Xenopus laevis/metabolismo , Interleucina-11/metabolismo , Larva/genética , Transducción de Señal/genética , Macrófagos , Cola (estructura animal)
17.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38770719

RESUMEN

Recent advances in cancer immunotherapy have highlighted the potential of neoantigen-based vaccines. However, the design of such vaccines is hindered by the possibility of weak binding affinity between the peptides and the patient's specific human leukocyte antigen (HLA) alleles, which may not elicit a robust adaptive immune response. Triggering cross-immunity by utilizing peptide mutations that have enhanced binding affinity to target HLA molecules, while preserving their homology with the original one, can be a promising avenue for neoantigen vaccine design. In this study, we introduced UltraMutate, a novel algorithm that combines Reinforcement Learning and Monte Carlo Tree Search, which identifies peptide mutations that not only exhibit enhanced binding affinities to target HLA molecules but also retains a high degree of homology with the original neoantigen. UltraMutate outperformed existing state-of-the-art methods in identifying affinity-enhancing mutations in an independent test set consisting of 3660 peptide-HLA pairs. UltraMutate further showed its applicability in the design of peptide vaccines for Human Papillomavirus and Human Cytomegalovirus, demonstrating its potential as a promising tool in the advancement of personalized immunotherapy.


Asunto(s)
Algoritmos , Vacunas contra el Cáncer , Método de Montecarlo , Humanos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , Antígenos HLA/inmunología , Antígenos HLA/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Mutación
18.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38487848

RESUMEN

The major histocompatibility complex (MHC) encodes a range of immune response genes, including the human leukocyte antigens (HLAs) in humans. These molecules bind peptide antigens and present them on the cell surface for T cell recognition. The repertoires of peptides presented by HLA molecules are termed immunopeptidomes. The highly polymorphic nature of the genres that encode the HLA molecules confers allotype-specific differences in the sequences of bound ligands. Allotype-specific ligand preferences are often defined by peptide-binding motifs. Individuals express up to six classical class I HLA allotypes, which likely present peptides displaying different binding motifs. Such complex datasets make the deconvolution of immunopeptidomic data into allotype-specific contributions and further dissection of binding-specificities challenging. Herein, we developed MHCpLogics as an interactive machine learning-based tool for mining peptide-binding sequence motifs and visualization of immunopeptidome data across complex datasets. We showcase the functionalities of MHCpLogics by analyzing both in-house and published mono- and multi-allelic immunopeptidomics data. The visualization modalities of MHCpLogics allow users to inspect clustered sequences down to individual peptide components and to examine broader sequence patterns within multiple immunopeptidome datasets. MHCpLogics can deconvolute large immunopeptidome datasets enabling the interrogation of clusters for the segregation of allotype-specific peptide sequence motifs, identification of sub-peptidome motifs, and the exportation of clustered peptide sequence lists. The tool facilitates rapid inspection of immunopeptidomes as a resource for the immunology and vaccine communities. MHCpLogics is a standalone application available via an executable installation at: https://github.com/PurcellLab/MHCpLogics.


Asunto(s)
Visualización de Datos , Péptidos , Humanos , Péptidos/química , Antígenos HLA/genética , Antígenos de Histocompatibilidad , Aprendizaje Automático , Análisis por Conglomerados
19.
Immunity ; 46(1): 120-132, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28087238

RESUMEN

Lymphocytes circulate through lymph nodes (LN) in search for antigen in what is believed to be a continuous process. Here, we show that lymphocyte migration through lymph nodes and lymph occurred in a non-continuous, circadian manner. Lymphocyte homing to lymph nodes peaked at night onset, with cells leaving the tissue during the day. This resulted in strong oscillations in lymphocyte cellularity in lymph nodes and efferent lymphatic fluid. Using lineage-specific genetic ablation of circadian clock function, we demonstrated this to be dependent on rhythmic expression of promigratory factors on lymphocytes. Dendritic cell numbers peaked in phase with lymphocytes, with diurnal oscillations being present in disease severity after immunization to induce experimental autoimmune encephalomyelitis (EAE). These rhythms were abolished by genetic disruption of T cell clocks, demonstrating a circadian regulation of lymphocyte migration through lymph nodes with time-of-day of immunization being critical for adaptive immune responses weeks later.


Asunto(s)
Inmunidad Adaptativa/inmunología , Quimiotaxis de Leucocito/inmunología , Relojes Circadianos/inmunología , Vigilancia Inmunológica/inmunología , Linfocitos/inmunología , Traslado Adoptivo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ganglios Linfáticos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
Circ Res ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39308399

RESUMEN

BACKGROUND: Alterations in lipid metabolism and DNA methylation are 2 hallmarks of aging. Connecting metabolomic, epigenomic, and aging outcomes help unravel the complex mechanisms underlying aging. We aimed to assess whether DNA methylation clocks mediate the association of circulating metabolites with incident atherosclerotic cardiovascular disease (ASCVD) and frailty. METHODS: The China Kadoorie Biobank is a prospective cohort study with a baseline survey from 2004 to 2008 and a follow-up period until December 31, 2018. We used the Infinium Methylation EPIC BeadChip to measure the methylation levels of 988 participants' baseline blood leukocyte DNA. Metabolite profiles, including lipoprotein particles, lipid constituents, and various circulating metabolites, were measured using quantitative nuclear magnetic resonance. The pace of DNA methylation age acceleration (AA) was calculated using 5 widely used epigenetic clocks (the first generation: Horvath, Hannum, and Li; the second generation: Grim and Pheno). Incident ASCVD was ascertained through linkage with local death and disease registries and national health insurance databases, supplemented by active follow-up. The frailty index was constructed using medical conditions, symptoms, signs, and physical measurements collected at baseline. RESULTS: A total of 508 incident cases of ASCVD were documented during a median follow-up of 9.5 years. The first generation of epigenetic clocks was associated with the risk of ASCVD (P<0.05). For each SD increment in LiAA, HorvathAA, and HannumAA, the corresponding hazard ratios for ASCVD risk were 1.16 (1.05-1.28), 1.10 (1.00-1.22), and 1.17 (1.04-1.31), respectively. Only LiAA mediated the association of various metabolites (lipids, fatty acids, histidine, and inflammatory biomarkers) with ASCVD, with the mediating proportion reaching up to 15% for the diameter of low-density lipoprotein (P=1.2×10-2). Regarding general aging, a 1-SD increase in GrimAA was associated with an average increase of 0.10 in the frailty index (P=2.0×10-3), and a 33% and 63% increased risk of prefrailty and frailty at baseline (P=1.5×10-2 and 5.8×10-2), respectively; this association was not observed with other clocks. GrimAA mediated the effect of various lipids, fatty acids, glucose, lactate, and inflammatory biomarkers on the frailty index, with the mediating proportion reaching up to 22% for triglycerides in very small-sized very low-density lipoprotein (P=6.0×10-3). CONCLUSIONS: These findings suggest that epigenomic mechanisms may play a role in the associations between circulating metabolites and the aging process. Different mechanisms underlie the first and second generations of DNA methylation age in cardiovascular and general aging.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA