Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(7): 1397-1410.e9, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33725486

RESUMEN

Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Proteolisis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasas/genética , Línea Celular Tumoral , Membrana Celular/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfolípidos/genética , Multimerización de Proteína
2.
Annu Rev Genomics Hum Genet ; 25(1): 51-76, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38692586

RESUMEN

Genome-wide screening is a potent approach for comprehensively understanding the molecular mechanisms of biological phenomena. However, despite its widespread use in the past decades across various biological targets, its application to biochemical reactions with temporal and reversible biological outputs remains a formidable challenge. To uncover the molecular machinery underlying various biochemical reactions, we have recently developed the revival screening method, which combines flow cytometry-based cell sorting with library reconstruction from collected cells. Our refinements to the traditional genome-wide screening technique have proven successful in revealing the molecular machinery of biochemical reactions of interest. In this article, we elucidate the technical basis of revival screening, focusing on its application to CRISPR-Cas9 single guide RNA (sgRNA) library screening. Finally, we also discuss the future of genome-wide screening while describing recent achievements from in vitro and in vivo screening.


Asunto(s)
Sistemas CRISPR-Cas , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Citometría de Flujo/métodos , Animales , Estudio de Asociación del Genoma Completo , Edición Génica/métodos , Biblioteca de Genes
3.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098070

RESUMEN

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Asunto(s)
Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , Ligandos , Linfocitos T CD8-positivos , Unión Proteica
4.
Biol Chem ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39344812

RESUMEN

In this work, we report the development of a platform for the early selection of non-competitive antibody-fragments against cell surface receptors that do not compete for binding of their natural ligand. For the isolation of such subtype of blocking antibody-fragments, we applied special fluorescence-activated cell sorting strategies for antibody fragments isolation from yeast surface display libraries. Given that most of the monoclonal antibodies approved on the market are blocking ligand-receptor interactions often leading to resistance and/or side effects, targeting allosteric sites represents a promising mechanism of action to open new avenues for treatment. To directly identify these antibody-fragments during library screening, we employed immune libraries targeting the epidermal growth factor receptor as proof of concept. Incorporating a labeled orthosteric ligand during library sorting enables the early selection of non-competitive binders and introduces an additional criterion to refine the selection of candidates exhibiting noteworthy properties. Furthermore, after sequencing, more candidates were identified compared to classical sorting based solely on target binding. Hence, this platform can significantly improve the drug discovery process by the early selection of more candidates with desired properties.

5.
Microb Cell Fact ; 23(1): 252, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285401

RESUMEN

BACKGROUND: Corynebacterium glutamicum is an attractive host for secretory production of recombinant proteins, including high-value industrial enzymes and therapeutic proteins. The choice of an appropriate signaling peptide is crucial for efficient protein secretion. However, due to the limited availability of signal peptides in C. glutamicum, establishing an optimal secretion system is challenging. RESULT: We constructed a signal peptide library for the isolation of target-specific signal peptides and developed a highly efficient secretory production system in C. glutamicum. Based on the sequence information of the signal peptides of the general secretion-dependent pathway in C. glutamicum, a synthetic signal peptide library was designed, and validated with three protein models. First, we examined endoxylanase (XynA) and one potential signal peptide (C1) was successfully isolated by library screening on xylan-containing agar plates. With this C1 signal peptide, secretory production of XynA as high as 3.2 g/L could be achieved with high purity (> 80%). Next, the signal peptide for ⍺-amylase (AmyA) was screened on a starch-containing agar plate. The production titer of the isolated signal peptide (HS06) reached 1.48 g/L which was 2-fold higher than that of the well-known Cg1514 signal peptide. Finally, we isolated the signal peptide for the M18 single-chain variable fragment (scFv). As an enzyme-independent screening tool, we developed a fluorescence-dependent screening tool using Fluorescence-Activating and Absorption-Shifting Tag (FAST) fusion, and successfully isolated the optimal signal peptide (18F11) for M18 scFv. With 18F11, secretory production as high as 228 mg/L was achieved, which was 3.4-fold higher than previous results. CONCLUSIONS: By screening a fully synthetic signal peptide library, we achieved improved production of target proteins compared to previous results using well-known signal peptides. Our synthetic library provides a useful resource for the development of an optimal secretion system for various recombinant proteins in C. glutamicum, and we believe this bacterium to be a more promising workhorse for the bioindustry.


Asunto(s)
Corynebacterium glutamicum , Señales de Clasificación de Proteína , Proteínas Recombinantes , Corynebacterium glutamicum/metabolismo , Corynebacterium glutamicum/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Biblioteca de Péptidos , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/biosíntesis , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , alfa-Amilasas/metabolismo , alfa-Amilasas/genética
6.
Bioorg Med Chem ; 104: 117700, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583236

RESUMEN

Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine to inosine in double-stranded RNA (dsRNA). ADARs' ability to recognize and edit dsRNA is dependent on local sequence context surrounding the edited adenosine and the length of the duplex. A deeper understanding of how editing efficiency is affected by mismatches, loops, and bulges around the editing site would aid in the development of therapeutic gRNAs for ADAR-mediated site-directed RNA editing (SDRE). Here, a SELEX (systematic evolution of ligands by exponential enrichment) approach was employed to identify dsRNA substrates that bind to the deaminase domain of human ADAR2 (hADAR2d) with high affinity. A library of single-stranded RNAs was hybridized with a fixed-sequence target strand containing the nucleoside analog 8-azanebularine that mimics the adenosine deamination transition state. The presence of this nucleoside analog in the library biased the screen to identify hit sequences compatible with adenosine deamination at the site of 8-azanebularine modification. SELEX also identified non-duplex structural elements that supported editing at the target site while inhibiting editing at bystander sites.


Asunto(s)
Adenosina Desaminasa , Nucleósidos de Purina , Ribonucleósidos , Humanos , Adenosina , Adenosina Desaminasa/metabolismo , Secuencia de Bases , ARN Bicatenario , ARN Guía de Sistemas CRISPR-Cas
7.
Biol Pharm Bull ; 47(9): 1504-1510, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39284734

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a pleiotropic factor involved in multiple vital biological processes and a key mediator of gene transcription in response to cytokines, growth factors and aberrant activation of oncogenic signaling. STAT3 has two splicing isoforms, STAT3α and STAT3ß, derived from alternative splicing of exon 23 within pre-mRNA. STAT3ß differs from STAT3α by replacement of 55 amino-acid residues in the C-terminal transactivation domain with 7 specific amino acids. Thus, a shorter STAT3ß was originally regarded as a dominant negative isoform of STAT3α. Recently accumulating evidence from independent studies have shown STAT3 splicing isoforms confer distinct and overlapping functions in many fundamental cellular regulatory steps such as cell differentiation, inflammatory responses, and cancer progression. However, relatively little is known about the mechanisms of STAT3 pre-mRNA splicing, and it remains undiscovered which chemical compounds or bioactive substances can induce the STAT3ß expression. In this study, we generated a potent reporter for detection of alternative splicing of STAT3 pre-mRNA optimized for the screening of function-known chemical library, and successfully identified entinostat, a histone deacetylase inhibitor, as a novel inducer of STAT3ß through modulating mRNA splicing. Our findings demonstrate that alternative splicing of STAT3 can be regulated by a compound, providing an important clue for understanding the regulation mechanisms of the expression balance of STAT3 isoforms in a chemical biology approach. Entinostat is likely to be a promising seed compound for elucidating how the higher ratio of STAT3ß expression impacts on biological responses associated with Janus kinase (JAK)/STAT3 signaling pathway.


Asunto(s)
Empalme Alternativo , Benzamidas , Piridinas , Precursores del ARN , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Empalme Alternativo/efectos de los fármacos , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Piridinas/farmacología , Benzamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Células HEK293 , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782128

RESUMEN

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Asunto(s)
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Fish Shellfish Immunol ; 137: 108730, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37084857

RESUMEN

Fish perivitelline fluid (PVF) is a vital extra-embryonic compartment. At hatching, PVF-contents dissolve into the hatching fluid (HF). Analysis of Atlantic salmon HF reveals nearly a hundred distinct proteins, most of which were identified by advanced mass-spectrometry. However, one entity with an apparent molecular weight 26 kDa, necessitated identification from its tryptic peptides. Subsequent cloning and sequencing revealed novel leukolectin-proteins. From bioinformatic analysis, leukolectins (LL) belong in the tectonin protein-family, with recognized functions in innate immunity. This study aims to identify LL-expressing cells in diverse fish species, and to characterize the LL-gene in order to predict bio-functions of leukolectins. LL-proteins were detected in HF from several fish species and one invertebrate, using polyclonal LL-specific IgGs. Embryonic LL-immunoreactive cells were numerous in Atlantic salmon, rainbow trout, fewer in Atlantic cod, and rare in Atlantic halibut and Oikopleura dioica. LL-immunoreactive cells were termed lectocytes, which corresponded to peridermal mucuscells stained by PAS, but unstained by eosin. Hence, lectocytes and hatching-gland cells were clearly distinguished. Northern blots revealed two salmon LL-transcripts at mid-embryogenesis. Such transcripts were detected in epithelial cells of the periderm, gills and oral cavity. LL-transcripts predominated in the periderm, while choriolysin-transcripts were dominant in the gills. No co-expression of choriolysins and LL-transcripts was detected. BAC-library screening yielded salmon LL's genestructure with 4 introns, 5 exons, TATA-box, multiple upstream putative transcription-factor bindingsites and polyadenylation site. LL-gene location on chromosome ssa17 was identified in Ssal_v3.1, the 2021version of the salmon genome. In conclusion, larvae from several fish species are outfitted with mucus enriched by LL-proteins. Mucus cells are present in embryos of all fishes, but embryonic lectocyte-numbers are far higher in species with near total larval survival. When (maternal) chorionic first-line immuno-defence is lost at hatching, leukolectin-enriched mucus may provide vital protection for larvae.


Asunto(s)
Oncorhynchus mykiss , Salmo salar , Animales , Inmunidad Innata/genética , Salmón , Intrones , Larva , Moco
10.
Mol Ther ; 30(12): 3601-3618, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35810332

RESUMEN

AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.


Asunto(s)
Miocitos Cardíacos , ARN Largo no Codificante , Animales , Humanos , Ratones , Tropismo , Cápside
11.
Mol Cancer ; 21(1): 11, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34983546

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. METHODS: CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. RESULTS: The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. CONCLUSIONS: These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


Asunto(s)
Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Pruebas Genéticas , Neoplasias Hepáticas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Técnicas de Silenciamiento del Gen , Pruebas Genéticas/métodos , Humanos , Estimación de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Oxidación-Reducción/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Pronóstico , Resultado del Tratamiento
12.
Biochem Biophys Res Commun ; 629: 95-100, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36115284

RESUMEN

Subtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer. These peptides competitively inhibited the binding of the B-subunit to a receptor-mimic molecule containing clustered Neu5Gc (Neu5Gc-polymer). We selected the peptide with the highest inhibitory efficacy, FFP-tet, and covalently bound it to beads to synthesize FFP-tet-beads, a highly clustered SubAB absorber that displayed potency to absorb SubAB cytotoxicity through direct binding to the toxin. The efficacy of FFP-tet-beads to absorb SubAB cytotoxicity in solution was similar to that of Neu5Gc-polymer, suggesting that FFP-tet-beads might be an effective therapeutic agent against complications arising from eae-negative STEC infection.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli Shiga-Toxigénica , Proteínas Portadoras/metabolismo , Celulosa/metabolismo , Citotoxinas , Proteínas de Escherichia coli/metabolismo , Biblioteca de Péptidos , Polímeros/metabolismo , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/metabolismo , Subtilisinas/toxicidad , Factores de Virulencia/metabolismo
13.
Metab Eng ; 72: 247-258, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35398513

RESUMEN

Targeted engineering of mammalian cells has been widely attempted to ensure the efficient production of therapeutic proteins with proper quality during bioprocesses. However, the identification of novel targets for cell engineering is labor-intensive and has not yet been fully substantiated. Here, we established a CRISPR/Cas9 library screening platform in human embryonic kidney (HEK293) cells based on guide RNA integration mediated by recombinase-mediated cassette exchange (RMCE) to interrogate gene function in a high-throughput manner. This platform was further advanced using a nuclear localization signal-tagged recombinase that increased RMCE efficiency by 4.8-fold. Using this platform, we identified putative target genes, such as CDK8, GAS2L1, and GSPT1, and their perturbation confers resistance to hyperosmotic stress that inhibits cell growth and induces apoptosis. Knockout of these genes in monoclonal antibody (mAb)-producing recombinant HEK293 (rHEK293) cells enhanced resistance to hyperosmotic stress-induced apoptosis, resulting in enhanced mAb production. In particular, GSPT1-knockout yielded 2.3-fold increase in maximum mAb concentration in fed-batch culture where hyperosmotic stress naturally occurs due to nutrient feeding. Taken together, this streamlined screening platform allows the identification of novel targets associated with hyperosmotic stress, enabling the development of stress-resistant cells producing recombinant proteins.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas Recombinantes , Recombinasas , Anticuerpos Monoclonales , Células HEK293 , Humanos , Riñón/metabolismo , Presión Osmótica , Proteínas Recombinantes/biosíntesis , Recombinasas/genética
14.
Pharmacol Res ; 184: 106409, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995346

RESUMEN

A range of neurodegenerative and related aging diseases, such as Alzheimer's disease and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based inhibitor design. Herein we employed a parallel small molecule library-screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Aß and tau. One remarkable class of inhibitors identified from these screens against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Secondary assays validated most of the identified inhibitors. In vivo efficacy evaluation of a selected catechol-containing compound, rosmarinic acid, demonstrated its strong mitigating effects of amylin amyloid deposition and related diabetic pathology in transgenic HIP rats. Further systematic investigation of selected class of inhibitors under aerobic and anaerobic conditions revealed that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. The molecular insights we gained not only explain why a large number of catechol-containing polyphenolic natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus Tipo 2 , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas/metabolismo , Animales , Antraquinonas , Catecoles/farmacología , Catecoles/uso terapéutico , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/uso terapéutico , Oxidación-Reducción , Agregado de Proteínas , Quinonas , Ratas
15.
Bioorg Chem ; 119: 105581, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34990933

RESUMEN

The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.


Asunto(s)
Antineoplásicos/farmacología , Indoles/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Piperazina/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indoles/síntesis química , Indoles/química , Ratones , Modelos Moleculares , Estructura Molecular , Inhibidores de la Monoaminooxidasa/síntesis química , Inhibidores de la Monoaminooxidasa/química , Nitritos/análisis , Piperazina/síntesis química , Piperazina/química , Relación Estructura-Actividad
16.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012203

RESUMEN

The routine generation of enzymes with completely new active sites is a major unsolved problem in protein engineering. Advances in this field have thus far been modest, perhaps due, at least in part, to the widespread use of modern natural proteins as scaffolds for de novo engineering. Most modern proteins are highly evolved and specialized and, consequently, difficult to repurpose for completely new functionalities. Conceivably, resurrected ancestral proteins with the biophysical properties that promote evolvability, such as high stability and conformational diversity, could provide better scaffolds for de novo enzyme generation. Kemp elimination, a non-natural reaction that provides a simple model of proton abstraction from carbon, has been extensively used as a benchmark in de novo enzyme engineering. Here, we present an engineered ancestral ß-lactamase with a new active site that is capable of efficiently catalyzing Kemp elimination. The engineering of our Kemp eliminase involved minimalist design based on a single function-generating mutation, inclusion of an extra polypeptide segment at a position close to the de novo active site, and sharply focused, low-throughput library screening. Nevertheless, its catalytic parameters (kcat/KM~2·105 M-1 s-1, kcat~635 s-1) compare favorably with the average modern natural enzyme and match the best proton-abstraction de novo Kemp eliminases that are reported in the literature. The general implications of our results for de novo enzyme engineering are discussed.


Asunto(s)
Ingeniería de Proteínas , Protones , Catálisis , Dominio Catalítico , beta-Lactamasas/genética
17.
Development ; 145(4)2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29437832

RESUMEN

Somites are periodically formed by segmentation of the anterior parts of the presomitic mesoderm (PSM). In the mouse embryo, this periodicity is controlled by the segmentation clock gene Hes7, which exhibits wave-like oscillatory expression in the PSM. Despite intensive studies, the exact mechanism of such synchronous oscillatory dynamics of Hes7 expression still remains to be analyzed. Detailed analysis of the segmentation clock has been hampered because it requires the use of live embryos, and establishment of an in vitro culture system would facilitate such analyses. Here, we established a simple and efficient method to generate mouse ES cell-derived PSM-like tissues, in which Hes7 expression oscillates like traveling waves. In these tissues, Hes7 oscillation is synchronized between neighboring cells, and the posterior-anterior axis is self-organized as the central-peripheral axis. This method is applicable to chemical-library screening and will facilitate the analysis of the molecular nature of the segmentation clock.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Tipificación del Cuerpo/genética , Células Madre Embrionarias/metabolismo , Mesodermo/metabolismo , Somitos/metabolismo , Animales , Relojes Biológicos , Técnicas de Cultivo de Célula , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Mediciones Luminiscentes , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
18.
Planta ; 253(1): 12, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389204

RESUMEN

MAIN CONCLUSION: Cadmium-sensitive yeast screening resulted in the isolation of protein translation factor SaeIF1 from the hyperaccumulator Sedum alfredii which has both general and special regulatory roles in controlling cadmium accumulation. The hyperaccumulator of Sedum alfredii has the extraordinary ability to hyperaccumulate cadmium (Cd) in shoots. To investigate its underlying molecular mechanisms of Cd hyperaccumulation, a cDNA library was generated from leaf tissues of S. alfredii. SaeIF1, belonging to the eukaryotic protein translation factor SUI1 family, was identified by screening Cd-sensitive yeast transformants with this library. The full-length cDNA of SaeIF1 has 582 bp and encodes a predicted protein with 120 amino acids. Transient expression assays showed subcellular localization of SaeIF1 in the cytoplasm. SaeIF1 was constitutively and highly expressed in roots and shoots of the hyperaccumulator of S. alfredii, while its transcript levels showed over 100-fold higher expression in the hyperaccumulator of S. alfredii relative to the tissues of a nonhyperaccumulating ecotype of S. alfredii. However, the overexpression of SaeIF1 in yeast cells increased Cd accumulation, but conferred more Cd sensitivity. Transgenic Arabidopsis thaliana expressing SaeIF1 accumulated more Cd in roots and shoots without changes in the ratio of Cd content in shoots and roots, but were more sensitive to Cd stress than wild type. Both special and general roles of SaeIF1 in Cd uptake, transportation, and detoxification are discussed, and might be responsible for the hyperaccumulation characteristics of S. alfredii.


Asunto(s)
Sedum , Cadmio/metabolismo , Ecotipo , Hojas de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Contaminantes del Suelo/metabolismo
19.
Chemistry ; 27(9): 3130-3141, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33215746

RESUMEN

New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 µm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.


Asunto(s)
Antituberculosos/farmacología , Cetoácido Reductoisomerasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Pirimidinonas/farmacología , Línea Celular , Humanos , Cetoácido Reductoisomerasa/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , NADP/metabolismo , Staphylococcus aureus/enzimología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
20.
Molecules ; 26(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206124

RESUMEN

Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.


Asunto(s)
Péptido Sintasas/metabolismo , Péptidos Cíclicos/biosíntesis , Ciclización , Humanos , Biblioteca de Péptidos , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA