Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(28): e2320222121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38954542

RESUMEN

Artificial skins or flexible pressure sensors that mimic human cutaneous mechanoreceptors transduce tactile stimuli to quantitative electrical signals. Conventional trial-and-error designs for such devices follow a forward structure-to-property routine, which is usually time-consuming and determines one possible solution in one run. Data-driven inverse design can precisely target desired functions while showing far higher productivity, however, it is still absent for flexible pressure sensors because of the difficulties in acquiring a large amount of data. Here, we report a property-to-structure inverse design of flexible pressure sensors, exhibiting a significantly greater efficiency than the conventional routine. We use a reduced-order model that analytically constrains the design scope and an iterative "jumping-selection" method together with a surrogate model that enhances data screening. As an exemplary scenario, hundreds of solutions that overcome the intrinsic signal saturation have been predicted by the inverse method, validating for a variety of material systems. The success in property design on multiple indicators demonstrates that the proposed inverse design is an efficient and powerful tool to target multifarious applications of flexible pressure sensors, which can potentially advance the fields of intelligent robots, advanced healthcare, and human-machine interfaces.

2.
Proc Natl Acad Sci U S A ; 120(29): e2303222120, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37432992

RESUMEN

Many systems in physics, chemistry, and biology exhibit oscillations with a pronounced random component. Such stochastic oscillations can emerge via different mechanisms, for example, linear dynamics of a stable focus with fluctuations, limit-cycle systems perturbed by noise, or excitable systems in which random inputs lead to a train of pulses. Despite their diverse origins, the phenomenology of random oscillations can be strikingly similar. Here, we introduce a nonlinear transformation of stochastic oscillators to a complex-valued function [Formula: see text](x) that greatly simplifies and unifies the mathematical description of the oscillator's spontaneous activity, its response to an external time-dependent perturbation, and the correlation statistics of different oscillators that are weakly coupled. The function [Formula: see text] (x) is the eigenfunction of the Kolmogorov backward operator with the least negative (but nonvanishing) eigenvalue λ1 = µ1 + iω1. The resulting power spectrum of the complex-valued function is exactly given by a Lorentz spectrum with peak frequency ω1 and half-width µ1; its susceptibility with respect to a weak external forcing is given by a simple one-pole filter, centered around ω1; and the cross-spectrum between two coupled oscillators can be easily expressed by a combination of the spontaneous power spectra of the uncoupled systems and their susceptibilities. Our approach makes qualitatively different stochastic oscillators comparable, provides simple characteristics for the coherence of the random oscillation, and gives a framework for the description of weakly coupled oscillators.

3.
Chemphyschem ; 25(14): e202400277, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38606486

RESUMEN

The electronic origins of the computed optical rotations of the simplest chiral and achiral chemical knots with comparatively simple compositions and large, anticipated magnetoelectric polarizabilities are provided. Linear response theory (LRT) is used to calculate the gyration at 1064 nm of two knotted polyyne chains, topological stereoisomers of cyclo[60]carbon. One isomer is analogous to the trefoil knot with approximate D3 symmetry and the other to the figure eight knot with approximate S4 symmetry. The response in each case can be attributed largely to the magnetic dipole term that arises in a near degenerate E-like excited state. An oriented achiral figure eight knot is as optically active in some directions as the chiral knot in any direction, and its absolute eigenvalues are larger.

4.
Proc Natl Acad Sci U S A ; 118(14)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33795518

RESUMEN

The nature of order in low-temperature phases of some materials is not directly seen by experiment. Such "hidden orders" (HOs) may inspire decades of research to identify the mechanism underlying those exotic states of matter. In insulators, HO phases originate in degenerate many-electron states on localized f or d shells that may harbor high-rank multipole moments. Coupled by intersite exchange, those moments form a vast space of competing order parameters. Here, we show how the ground-state order and magnetic excitations of a prototypical HO system, neptunium dioxide NpO2, can be fully described by a low-energy Hamiltonian derived by a many-body ab initio force theorem method. Superexchange interactions between the lowest crystal-field quadruplet of Np4+ ions induce a primary noncollinear order of time-odd rank 5 (triakontadipolar) moments with a secondary quadrupole order preserving the cubic symmetry of NpO2 Our study also reveals an unconventional multipolar exchange striction mechanism behind the anomalous volume contraction of the NpO2 HO phase.

5.
Sensors (Basel) ; 24(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732914

RESUMEN

Flexible sensors have gained popularity in recent years. This study proposes a novel structure of a resistive four-channel tactile sensor capable of distinguishing the magnitude and direction of normal forces acting on its sensing surface. The sensor uses EcoflexTM00-30 as the substrate and EGaIn alloy as the conductive filler, featuring four mutually perpendicular and curved channels to enhance the sensor's dynamic responsiveness. Experiments and simulations show that the sensor has a large dynamic range (31.25-100 mΩ), high precision (deviation of repeated pressing below 0.1%), linearity (R2 above 0.97), fast response/recovery time (0.2 s/0.15 s), and robust stability (with fluctuations below 0.9%). This work uses an underactuated robotic hand equipped with a four-channel tactile sensor to grasp various objects. The sensor data collected effectively predicts the shapes of the objects grasped. Furthermore, the four-channel tactile sensor proposed in this work may be employed in smart wearables, medical diagnostics, and other industries.

6.
Nanotechnology ; 33(19)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35090140

RESUMEN

Within linear-response theory we derive a response function that thoroughly accounts for the influence of elastic scattering and is valid beyond the long-wavelength limit. We use the theory to evaluate the polarization function and the conductivity in metallic armchair graphene nanoribbons in the Lindhard approximation for intra-band and inter-band transitions and for a relaxation timeτthat is not constant. We obtain a logarithmic behaviour in the scattering-independent polarization function not only for intra-band transitions, as is usually the case for one-dimensional systems, but also for inter-band transitions. Modifying the screening wave vector and the impurity density in the long-wavelength limit strongly influences the relaxation time. In contrast, for large wave vectors, this modification leads to a conservative value ofτ. We show that the imaginary part of the impurity-dependent conductivity varies with the wave vector while its scattering-independent part exists only for a single value of the wave vector.

7.
Entropy (Basel) ; 24(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35626551

RESUMEN

While quantum phase transitions share many characteristics with thermodynamic phase transitions, they are also markedly different as they occur at zero temperature. Hence, it is not immediately clear whether tools and frameworks that capture the properties of thermodynamic phase transitions also apply in the quantum case. Concerning the crossing of thermodynamic critical points and describing its non-equilibrium dynamics, the Kibble-Zurek mechanism and linear response theory have been demonstrated to be among the very successful approaches. In the present work, we show that these two approaches are also consistent in the description of quantum phase transitions, and that linear response theory can even inform arguments of the Kibble-Zurek mechanism. In particular, we show that the relaxation time provided by linear response theory gives a rigorous argument for why to identify the "gap" as a relaxation rate, and we verify that the excess work computed from linear response theory exhibits Kibble-Zurek scaling.

8.
Entropy (Basel) ; 24(1)2022 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-35052157

RESUMEN

We present a detailed analytical investigation of the optimal control of uniformly heated granular gases in the linear regime. The intensity of the stochastic driving is therefore assumed to be bounded between two values that are close, which limits the possible values of the granular temperature to a correspondingly small interval. Specifically, we are interested in minimising the connection time between the non-equilibrium steady states (NESSs) for two different values of the granular temperature by controlling the time dependence of the driving intensity. The closeness of the initial and target NESSs make it possible to linearise the evolution equations and rigorously-from a mathematical point of view-prove that the optimal controls are of bang-bang type, with only one switching in the first Sonine approximation. We also look into the dependence of the optimal connection time on the bounds of the driving intensity. Moreover, the limits of validity of the linear regime are investigated.

9.
J Comput Chem ; 42(8): 552-563, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33433010

RESUMEN

A computational method to investigate the global conformational change of a protein is proposed by combining the linear response path following (LRPF) method and three-dimensional reference interaction site model (3D-RISM) theory, which is referred to as the LRPF/3D-RISM method. The proposed method makes it possible to efficiently simulate protein conformational changes caused by either solutions of varying concentrations or the presence of cosolvent species by taking advantage of the LRPF and 3D-RISM. The proposed method is applied to the urea-induced denaturation of ubiquitin. The LRPF/3D-RISM trajectories successfully simulate the early stage of the denaturation process within the simulation time of 300 ns, whereas no significant structural change is observed even in the 1 µs standard MD simulation. The obtained LRPF/3D-RISM trajectories reproduce the mechanism of the urea denaturation of ubiquitin reported in previous studies, and demonstrate the high efficiency of the method.


Asunto(s)
Proteínas/química , Solventes/química , Simulación de Dinámica Molecular , Conformación Proteica , Desnaturalización Proteica , Ubiquitina/química , Urea/química
10.
J Comput Chem ; 42(16): 1118-1125, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-33880780

RESUMEN

Some Mo-oxo complexes bearing pyridine rings have the capability for dihydrogen production from water. However, energy barrier and overall energy vary depending on the effect exerted by several substituent groups located at different positions around one or more pyridine rings which are ligands of these compounds. Based on the Karunadasa and coworkers investigation where the para-position was experimentally tested in compounds derivatised from the 2,6-bis[1,1-bis(2-pyridil)ethyl]-pyridine oxo-molybdenum complex synthesized (Karunadasa et al., Nature, 2010, 464, 1329), we tested the combined effect of electron-withdrawing and electron-donating groups simulated as perturbations represented by point-charges. Then, we used the density polarization concept, δρ(r), a local reactivity descriptor corresponding to the partially integrated linear response function, χ(r, r') (a non-local reactivity descriptor), which is able to reveal different displacements of π-electrons on molecular structures. We perturbed the para-positions in the pentadentate ligand 2,6-bis[1,1-bis(2-pyridil)ethyl]-pyridine in the Mo-based complex by means of point-charges. They were located in three different configurations of the organic ligand (trans, geminal, and cis) which could help to explain energy barriers and overall energy of reactions catalyzed by this type of Mo-complexes. Our results indicate that the trans configuration of point-charges induces the most amount of fraction of electron shifted on the complex. A Mo-based complex bearing the same trans configuration for electron-withdrawing and electron-donating substituent groups (cyano and amino, respectively), leads to a kinetically more favorable H2 release than the cis or geminal configuration of the substituent groups aforementioned.

11.
Chirality ; 33(6): 303-314, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33826196

RESUMEN

This work presents the first simulations of the full optical rotation (OR) tensor at coupled cluster with single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD-MVG OR tensor is origin independent, and each tensor element can in principle be related directly to experimental measurements on oriented systems. We compare the CCSD results with those from two density functionals, B3LYP and CAM-B3LYP, on a test set of 22 chiral molecules. The results show that the functionals consistently overestimate the CCSD results for the individual tensor components and for the trace (which is related to the isotropic OR), by 10%-20% with CAM-B3LYP and 20%-30% with B3LYP. The data show that the contribution of the electric dipole-magnetic dipole polarizability tensor to the OR tensor is on average twice as large as that of the electric dipole-electric quadrupole polarizability tensor. The difficult case of (1S,4S)-(-)-norbornenone also reveals that the evaluation of the former polarizability tensor is more sensitive than the latter. We attribute the better agreement of CAM-B3LYP with CCSD to the ability of this functional to better reproduce electron delocalization compared with B3LYP, consistent with previous reports on isotropic OR. The CCSD-MVG approach allows the computation of reference data of the full OR tensor, which may be used to test more computationally efficient approximate methods that can be employed to study realistic models of optically active materials.

12.
Sensors (Basel) ; 21(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34450987

RESUMEN

Recently, in-vitro studies of magnetic nanoparticle (MNP) hyperthermia have attracted significant attention because of the severity of this cancer therapy for in-vivo culture. Accurate temperature evaluation is one of the key challenges of MNP hyperthermia. Hence, numerical studies play a crucial role in evaluating the thermal behavior of ferrofluids. As a result, the optimum therapeutic conditions can be achieved. The presented research work aims to develop a comprehensive numerical model that directly correlates the MNP hyperthermia parameters to the thermal response of the in-vitro model using optimization through linear response theory (LRT). For that purpose, the ferrofluid solution is evaluated based on various parameters, and the temperature distribution of the system is estimated in space and time. Consequently, the optimum conditions for the ferrofluid preparation are estimated based on experimental and mathematical findings. The reliability of the presented model is evaluated via the correlation analysis between magnetic and calorimetric methods for the specific loss power (SLP) and intrinsic loss power (ILP) calculations. Besides, the presented numerical model is verified with our experimental setup. In summary, the proposed model offers a novel approach to investigate the thermal diffusion of a non-adiabatic ferrofluid sample intended for MNP hyperthermia in cancer treatment.


Asunto(s)
Hipertermia Inducida , Nanopartículas de Magnetita , Neoplasias , Humanos , Hipertermia , Magnetismo , Neoplasias/terapia , Reproducibilidad de los Resultados
13.
Sensors (Basel) ; 21(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884141

RESUMEN

The detection of an electromagnetic pulse (EMP) field is of great significance in determining the field environment of tested equipment in small spaces. Finger-shaped miniature optical fiber sensors for electromagnetic pulse field measurement were designed. The antenna of a weak field sensor was integrated with a shielding shell, and the wire welded at the direct electro-optic converting circuit connected to an optical fiber through special structure and circuit design was taken as the antenna of a strong field sensor. Measurements in the time domain and frequency domain had been carried out for the two sensors. Experiment results demonstrate that the weak field sensor and the strong field sensor have flat responses from 100 kHz to 1 GHz with a variation of 2.3 dB and 2.9 dB, respectively, and the EMP waveform detected by the sensors agrees well with the applied standard square wave. Moreover, the strong field sensor exhibits linear responses from 645 V/m to 83 kV/m. The resolution of the weak field sensor is as low as 13 V/m. The result indicated that the designed sensors had good performance.

14.
Entropy (Basel) ; 23(2)2021 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-33670053

RESUMEN

Biological ion channels are fundamental to maintaining life. In this manuscript we apply our recently developed statistical and linear response theory to investigate Na+ conduction through the prokaryotic Na+ channel NaChBac. This work is extended theoretically by the derivation of ionic conductivity and current in an electrochemical gradient, thus enabling us to compare to a range of whole-cell data sets performed on this channel. Furthermore, we also compare the magnitudes of the currents and populations at each binding site to previously published single-channel recordings and molecular dynamics simulations respectively. In doing so, we find excellent agreement between theory and data, with predicted energy barriers at each of the four binding sites of ∼4,2.9,3.6, and 4kT.

15.
Entropy (Basel) ; 23(2)2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33514033

RESUMEN

We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This relation allow us to predict the influence of a weak amplitude time dependent external stimuli on spatio-temporal spike correlations, from the spontaneous statistics (without stimulus) in a general context where the memory in spike dynamics can extend arbitrarily far in the past. Using this approach, we show how the linear response is explicitly related to the collective effect of the stimuli, intrinsic neuronal dynamics, and network connectivity on spike train statistics. We illustrate our results with numerical simulations performed over a discrete time integrate and fire model.

16.
Ann Bot ; 125(2): 365-376, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31532484

RESUMEN

BACKGROUND AND AIMS: Coastal wetlands have evolved to withstand stressful abiotic conditions through the maintenance of hydrologic feedbacks between vegetation production and flooding. However, disruption of these feedbacks can lead to ecosystem collapse, or a regime shift from vegetated wetland to open water. To prevent the loss of critical coastal wetland habitat, we must improve understanding of the abiotic-biotic linkages among flooding and wetland stability. The aim of this research was to identify characteristic landscape patterns and thresholds of wetland degradation that can be used to identify areas of vulnerability, reduce flooding threats and improve habitat quality. METHODS: We measured local- and landscape-scale responses of coastal wetland vegetation to flooding stress in healthy and degrading coastal wetlands. We hypothesized that conversion of Spartina patens wetlands to open water could be defined by a distinct change in landscape configuration pattern, and that this change would occur at a discrete elevation threshold. KEY RESULTS: Despite similarities in total land and water cover, we observed differences in the landscape configuration of vegetated and open water pixels in healthy and degrading wetlands. Healthy wetlands were more aggregated, and degrading wetlands were more fragmented. Generally, greater aggregation was associated with higher wetland elevation and better drainage, compared with fragmented wetlands, which had lower elevation and poor drainage. The relationship between vegetation cover and elevation was non-linear, and the conversion from vegetated wetland to open water occurred beyond an elevation threshold of hydrologic stress. CONCLUSIONS: The elevation threshold defined a transition zone where healthy, aggregated, wetland converted to a degrading, fragmented, wetland beyond an elevation threshold of 0.09 m [1988 North American Vertical Datum (NAVD88)] [0.27 m mean sea level (MSL)], and complete conversion to open water occurred beyond 0.03 m NAVD88 (0.21 m MSL). This work illustrates that changes in landscape configuration can be used as an indicator of wetland loss. Furthermore, in conjunction with specific elevation thresholds, these data can inform restoration and conservation planning to maximize wetland stability in anticipation of flooding threats.


Asunto(s)
Ecosistema , Humedales , Conservación de los Recursos Naturales , Poaceae
17.
Chirality ; 32(3): 243-253, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31863681

RESUMEN

In this work, we describe a simple approach to select the most important molecular orbitals (MOs) to compute the optical rotation tensor through linear response (LR) Kohn-Sham density functional theory (KS-DFT). Taking advantage of the iterative nature of the algorithms commonly used to solve the LR equations, we select the MOs with contributions to the guess perturbed density that are larger than a certain threshold and solve the LR equations with the selected MOs only. We propose two criteria for the selection, and two definitions of the selection threshold. We then test the approach with two functionals (B3LYP and CAM-B3LYP) and two basis sets (aug-cc-pVDZ and aug-cc-pVTZ) on a set of 51 organic molecules with specific rotation spanning five orders of magnitude, 100 -104 deg (dm-1 (g/mL)-1 ). We show that this approach indeed can provide very accurate values of specific rotation with estimated speedup that ranges from 2 to 8× with the most conservative selection criterion, and up to 20 to 30× with the intermediate criterion.

18.
Proc Natl Acad Sci U S A ; 114(44): 11633-11638, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-29078266

RESUMEN

We establish the physical origins of chemical transferability from the perspective of the nearsightedness of electronic matter. To do this, we explicitly evaluate the response of electron density to a change in the system, at constant chemical potential, by computing the softness kernel, [Formula: see text] The softness kernel is nearsighted, indicating that under constant-chemical-potential conditions like dilute solutions changing the composition of the molecule at [Formula: see text] has only local effects and does not have any significant impact on the reactivity at positions [Formula: see text] far away from point [Formula: see text] This locality principle elucidates the transferability of functional groups in chemistry.

19.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096631

RESUMEN

Superparamagnetic ZnxFe3-xO4 magnetic nanoparticles (0 ≤ x < 0.5) with spherical shapes of 16 nm average diameter and different zinc doping level have been successfully synthesized by co-precipitation method. The homogeneous zinc substitution of iron cations into the magnetite crystalline structure has led to an increase in the saturation magnetization of nanoparticles up to 120 Am2/kg for x ~ 0.3. The specific absorption rate (SAR) values increased considerably when x is varied between 0 and 0.3 and then decreased for x ~ 0.5. The SAR values are reduced upon the immobilization of the nanoparticles in a solid matrix being significantly increased by a pre-alignment step in a uniform static magnetic field before immobilization. The SAR values displayed a quadratic dependence on the alternating magnetic field amplitude (H) up to 35 kA/m. Above this value, a clear saturation effect of SAR was observed that was successfully described qualitatively and quantitatively by considering the non-linear field's effects and the magnetic field dependence of both Brown and Neel relaxation times. The Neel relaxation time depends more steeply on H as compared with the Brown relaxation time, and the magnetization relaxation might be dominated by the Neel mechanism, even for nanoparticles with large diameter.


Asunto(s)
Nanopartículas del Metal/química , Zinc/química , Ácido Cítrico/química , Óxido Ferrosoférrico/química , Hipertermia Inducida/métodos , Campos Magnéticos , Microscopía Electrónica de Transmisión , Espectrometría por Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Difracción de Rayos X
20.
Entropy (Basel) ; 22(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33266513

RESUMEN

The Thermodynamic Formalism provides a rigorous mathematical framework for studying quantitative and qualitative aspects of dynamical systems. At its core, there is a variational principle that corresponds, in its simplest form, to the Maximum Entropy principle. It is used as a statistical inference procedure to represent, by specific probability measures (Gibbs measures), the collective behaviour of complex systems. This framework has found applications in different domains of science. In particular, it has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational tool, in order to link the dynamics of interacting neurons and the statistics of action potentials from either experimental data or mathematical models. We comment on perspectives and open problems in theoretical neuroscience that could be addressed within this formalism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA