Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 26(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34641588

RESUMEN

Liquid crystals represent a fascinating intermediate state of matter, with dynamic yet organized molecular features and untapped opportunities in sensing. Several works report the use of liquid crystal droplets formed by microfluidics and stabilized by surfactants such as sodium dodecyl sulfate (SDS). In this work, we explore, for the first time, the potential of surface-active ionic liquids of the imidazolium family as surfactants to generate in high yield, stable and oriented liquid crystal droplets. Our results show that [C12MIM][Cl], in particular, yields stable, uniform and monodisperse droplets (diameter 74 ± 6 µm; PDI = 8%) with the liquid crystal in a radial configuration, even when compared with the standard SDS surfactant. These findings reveal an additional application for ionic liquids in the field of soft matter.

2.
Proc Natl Acad Sci U S A ; 114(9): 2137-2142, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28193865

RESUMEN

An important goal of the modern soft matter science is to discover new self-assembly modalities to precisely control the placement of small particles in space. Spatial inhomogeneity of liquid crystals offers the capability to organize colloids in certain regions such as the cores of the topological defects. Here we report two self-assembly modes of nanoparticles in linear defects-disclinations in a lyotropic colloidal cholesteric liquid crystal: a continuous helicoidal thread and a periodic array of discrete beads. The beads form one-dimensional arrays with a periodicity that matches half a pitch of the cholesteric phase. The periodic assembly is governed by the anisotropic surface tension and elasticity at the interface of beads with the liquid crystal. This mode of self-assembly of nanoparticles in disclinations expands our ability to use topological defects in liquid crystals as templates for the organization of nanocolloids.

3.
Angew Chem Int Ed Engl ; 54(7): 2160-4, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25487252

RESUMEN

Constructing and tuning self-organized three-dimensional (3D) superstructures with tailored functionality is crucial in the nanofabrication of smart molecular devices. Herein we fabricate a self-organized, phototunable 3D photonic superstructure from monodisperse droplets of one-dimensional cholesteric liquid crystal (CLC) containing a photosensitive chiral molecular switch with high helical twisting power. The droplets are obtained by a glass capillary microfluidic technique by dispersing into PVA solution that facilitates planar anchoring of the liquid-crystal molecules at the droplet surface, as confirmed by the observation of normal incidence selective circular polarized reflection in all directions from the core of individual droplet. Photoirradiation of the droplets furnishes dynamic reflection colors without thermal relaxation, whose wavelength can be tuned reversibly by variation of the irradiation time. The results provided clear evidence on the phototunable reflection in all directions.

4.
Biosensors (Basel) ; 12(5)2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624576

RESUMEN

In this work, we have combined the advantages of sequence programmability of DNA nanotechnology and optical birefringence of liquid crystals (LCs). Herein, DNA amphiphiles were adsorbed onto LC droplets. A unique phenomenon of LC droplet aggregation was demonstrated, using DNA-modified LC droplets, through complementary DNA hybridization. Further functionalization of DNA-modified LC droplets with a desired DNA sequence was used to detect a wide range of chemicals and biomolecules, such as Hg2+, thrombin, and enzymes, through LC droplet aggregation and vice versa, which can be seen through the naked eye. These DNA-modified LC droplets can be printed onto a desired patterned surface with temperature-induced responsiveness and reversibility. Overall, our work is the first to report DNA-modified LC droplet, which provides a general detection platform based on the development of DNA aptamers. Additionally, this work inspires the exploration of surface information visualization combined with microcontact printing.


Asunto(s)
Cristales Líquidos , ADN/química , Cristales Líquidos/química , Hibridación de Ácido Nucleico
5.
Biosensors (Basel) ; 11(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34677341

RESUMEN

Liquid crystals (LCs) with stimuli-responsive configuration transition and optical anisotropic properties have attracted enormous interest in the development of simple and label-free biosensors. The combination of microfluidics and the LCs offers great advantages over traditional LC-based biosensors including small sample consumption, fast analysis and low cost. Moreover, microfluidic techniques provide a promising tool to fabricate uniform and reproducible LC-based sensing platforms. In this review, we emphasize the recent development of microfluidics in the fabrication and integration of LC-based biosensors, including LC planar sensing platforms and LC droplets. Fabrication and integration of LC-based planar platforms with microfluidics for biosensing applications are first introduced. The generation and entrapment of monodisperse LC droplets with different microfluidic structures, as well as their applications in the detection of chemical and biological species, are then summarized. Finally, the challenges and future perspectives of the development of LC-based microfluidic biosensors are proposed. This review will promote the understanding of microfluidic techniques in LC-based biosensors and facilitate the development of LC-based microfluidic biosensing devices with high performance.


Asunto(s)
Técnicas Biosensibles , Cristales Líquidos , Microfluídica , Dispositivos Laboratorio en un Chip
6.
Adv Sci (Weinh) ; 6(17): 1900785, 2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31508284

RESUMEN

Microfabrication of complex double emulsion droplets with controlled substructures, which resemble biological cells, is an important but a highly challenging subject. Here, a new approach is proposed based on laser-induced injection of water nanodroplets into a liquid crystal (LC) drop. In contrast to the conventional top-down microfluidic fabrication, this method employs a series of bottom-up strategies such as nanodroplet injection, spontaneous and assisted coalescence, elastically driven actuation, and self-assembly. Each step is controlled precisely by adjusting the laser beam, interfacial tension, and its gradients, surface anchoring, and elasticity of the LC. Whispering gallery mode illumination is used to monitor the injection of droplets. A broad spectrum of double emulsions with a predesigned hierarchical architecture is fabricated and reconfigured by temperature, laser-induced coalescence, and injection. The proposed bottom-up method to produce customized microemulsions that are responsive to environmental cues can be used in the development of drug delivery systems, biosensors, and functional soft matter microstructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA