Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107247, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556083

RESUMEN

There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Ciclina D1 , Proteína 1 Similar a ELAV , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Transducción de Señal , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/metabolismo , Ciclina D1/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Ratones Desnudos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética , Hepatitis C/complicaciones , Regulación hacia Arriba , Biomarcadores de Tumor
2.
Mol Cell Biochem ; 476(2): 841-852, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33151463

RESUMEN

Long non-coding RNAs are novel regulators in neuropathic pain. In this study, we aimed to explore the role and the mechanism of lncRNA FIRRE in regulating the secretion of microglial cells-derived proinflammatory cytokines in neuropathic pain. The female mouse model of neuropathic pain was established by bilateral chronic constriction injury (CCI) surgery. The mouse primary microglial cells were induced by lipopolysaccharide (LPS). The interaction between FIRRE and high mobility group box 1 (HMGB1) was assessed by RNA immunoprecipitation, RNA pull-down, and ubiquitination assays. FIRRE expression was upregulated in the spinal cord tissue of female CCI mice and LPS-induced microglial cells. The concentrations of IL-1ß, TNF-α, and IL-6 from LPS-induced microglial cells were reduced by FIRRE knockdown. FIRRE bound to HMGB1 and negatively regulated its protein level. The ubiquitination degradation of HMGB1 was promoted by FIRRE silence. The HMGB1 over-expression reversed the inhibitory effect of FIRRE silence on the secretion of IL-1ß, TNF-α, and IL-6 from LPS-induced microglial cells. The in vivo experiment showed that FIRRE knockdown alleviated neuropathic pain of CCI female mice. Our findings indicated that lncRNA FIRRE downregulation inhibits the secretion of microglial cells-derived proinflammatory cytokines by decreasing HMGB1 expression, thereby relieving neuropathic pain of female mice.


Asunto(s)
Proteína HMGB1/biosíntesis , Microglía/metabolismo , Neuralgia/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Proteína HMGB1/metabolismo , Ratones , Ratones Endogámicos C57BL , Microglía/patología , Neuralgia/genética , Neuralgia/patología , Cultivo Primario de Células , ARN Largo no Codificante/genética
3.
Front Genet ; 12: 674653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168678

RESUMEN

OBJECTIVES: The role of lncRNAs in gallbladder cancer (GBC) remains poorly understood. In this study, we explored the function of functional intergenic repeating RNA element (FIRRE) in GBC. MATERIALS AND METHODS: Whole transcriptome resequencing was performed in three pairs of GBC tissues and adjacent non-tumor tissues. lncRNA FIRRE expression was verified by real-time PCR. The function of FIRRE in GBC was evaluated by experiments in vitro and in vivo. The mechanism of FIRRE was investigated via fluorescent in situ hybridization, RNA pull-down, dual luciferase reporter assays, and RNA immunoprecipitation. RESULTS: FIRRE level was dramatically increased in GBC tissues compared to that in the adjacent non-tumor tissues. High expression of FIRRE was closely related to clinical stage and poor prognosis in GBC patients. Moreover, FIRRE remarkably enhanced proliferation and migration, and inhibited apoptosis of GBC cells. Mechanistically, FIRRE modulated YOD1 expression by sponging miR-520a-3p, thus contributing to the development of GBC. CONCLUSION: Our data revealed that FIRRE might act as a novel mediator in GBC progression by sponging miR-520a-3p and regulating YOD1. FIRRE might be regarded as a potential diagnostic marker or target for GBC treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA