RESUMEN
Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that CâC bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.
RESUMEN
Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability. We introduce herein a concept of long-lived flexible neural electrodes using silicon carbide (SiC) nanomembranes as a faradic interface and thermal oxide thin films as an electrical barrier layer. The SiC nanomembranes were developed using a chemical vapor deposition (CVD) process at the wafer level, and thermal oxide was grown using a high-quality wet oxidation technique. The proposed material developments are highly scalable and compatible with MEMS technologies, facilitating the mass production of long-lived implanted bioelectrodes. Our experimental results showed excellent stability of the SiC/silicon dioxide (SiO2) bioelectronic system that can potentially last for several decades with well-maintained electronic properties in biofluid environments. We demonstrated the capability of the proposed material system for peripheral nerve stimulation in an animal model, showing muscle contraction responses comparable to those of a standard non-implanted nerve stimulation device. The design concept, scalable fabrication approach, and multimodal functionalities of SiC/SiO2 flexible electronics offer an exciting possibility for fundamental neuroscience studies, as well as for neural stimulation-based therapies.
Asunto(s)
Terapia por Estimulación Eléctrica , Neuroestimuladores Implantables , Nanoestructuras , Semiconductores , Compuestos Inorgánicos de Carbono/química , Terapia por Estimulación Eléctrica/instrumentación , Membranas Artificiales , Compuestos de Silicona/química , Dióxido de Silicio/químicaRESUMEN
The five-choice serial reaction time task (5CSRTT) is a test of attention that provides a well-validated ancillary measure of impulsive action, measured by premature responses. The task has been adapted for mice in touchscreen operant boxes, which is thought to offer improved test-retest reliability. Few studies have assessed the long-term stability of performance, including premature responding in this version of the task. We used the touchscreen 5CSRTT to conduct longitudinal testing of stability of premature responding following repeated behavioral and pharmacological manipulations. Male C57BL/6J mice were trained on a baseline version of the 5CSRTT. They were then tested on versions of the task in which the stimulus duration was reduced, and inter-trial intervals were elongated or varied within-session. Premature responding was subsequently tested following administration of pharmacological agents known to bi-directionally affect attention and impulsive action-cocaine, atomoxetine, and yohimbine. Mice were lastly re-tested 6 months later using the 5CSRTT with elongated inter-trial intervals. A reduced stimulus duration impacted attention, with reduced accuracy and increased omissions, but had no effect on premature responding. Both elongating and varying the inter-trial interval within-session increased premature responses. Mice showed similar and stable levels of increased premature responding 6 months later. Cocaine increased premature responding, though less than previously reported in rats. Atomoxetine reduced premature responding. Yohimbine had no effect on premature responding in the baseline task but decreased premature responding when tested using an elongated inter-trial interval. Overall, these results highlight that the touch screen adaptation of the 5CSRTT is an effective method for longitudinal testing of attention and impulsive action and remains sensitive to performance changes arising from repeated pharmacological and behavioral challenges.
RESUMEN
Understanding the gold core-ligand interaction in gold nanoclusters (GNCs) is essential for the on-demand tailoring of their photoluminescence properties and long-term stability. Here, inspired by the suckers arranged directionally on the tentacles of octopus, a series of GNCs with regulating ligand structures are grown and stabilized on the cellulose nanocrystals (CNCs). The carboxylated CNCs providing an electron-rich environment to promote the luminescence of GNCs and stabilize it within a long-term of 1 year through anchoring and diluting effects, and the highest quantum yields reaches 31.02% in ultrapure water. Interestingly, this bionic preparation strategy is generally applicable to various ligands for tailoring on-demand hROS-responsive and nonresponsive GNCs to construct tunable-emission wavelength dual GNCs ratiometric probes. The results show that designing a specific ligand structure to inhibit the transformation of Au-Au to Au (I)-ligand in GNCs is crucial to regulate the hROS-responsive characteristics. As expected, the interfacial compatible dual GNCs ratiometric probe with a hROS limit of detection of 0.74 µmol L-1 can diagnose certain diseases through intracellular hROS imaging. This work provides important insights for understanding the gold core-ligand interaction in GNCs during the oxidation process triggered by intracellular hROS.
Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Ligandos , Luminiscencia , Diagnóstico por Imagen , Nanopartículas del Metal/químicaRESUMEN
Seawater electrolysis can generate carbon-neutral hydrogen but its efficiency is hindered by the low mass activity and poor stability of commercial catalysts at industrial current densities. Herein, Pt nanoclusters are loaded on nickel-iron-cobalt phosphide nanosheets, with the obtained Pt@NiFeCo-P electrocatalyst exhibiting excellent hydrogen evolution reaction (HER) activity and stability in alkaline seawater at ampere-level current densities. The catalyst delivers an ultralow HER overpotential of 19.7 mV at -10 mA cm-2 in seawater-simulating alkaline solutions, along with a Pt-mass activity 20.8 times higher than Pt/C under the same conditions, while dropping to 8.3 mV upon a five-fold NaCl concentrated natural seawater. Remarkably, Pt@NiFeCo-P offers stable operation for over 1000 h at 1 A cm-2 in an alkaline brine electrolyte, demonstrating its potential for efficient and long-term seawater electrolysis. X-ray photoelectron spectroscopy (XPS), in situ electrochemical impedance spectroscopy (EIS), and in situ Raman studies revealed fast electron and charge transfer from the NiFeCo-P substrate to Pt nanoclusters enabled by a strong metal-support interaction, which increased the coverage of H* and accelerated water dissociation on high valent Co sites. This study represents a significant advancement in the development of efficient and stable electrocatalysts with high mass activity for sustainable hydrogen generation from seawater.
RESUMEN
Rechargeable aqueous aluminum batteries (AABs) are promising energy storage technologies owing to their high safety and ultra-high energy-to-price ratio. However, either the strong electrostatic forces between high-charge-density Al3+ and host lattice, or sluggish large carrier-ion diffusion toward the conventional inorganic cathodes generates inferior cycling stability and low rate-capacity. To overcome these inherent confinements, a series of promising redox-active organic materials (ROMs) are investigated and a π-conjugated structure ROMs with synergistic CâO and CâN groups is optimized as the new cathode in AABs. Benefiting from the joint utilization of multi-redox centers and rich π-π intermolecular interactions, the optimized ROMs with unique ion coordination storage mechanism facilely accommodate complex active ions with mitigated coulombic repulsion and robust lattice structure, which is further validated via theoretical simulations. Thus, the cathode achieves enhanced rate performance (153.9 mAh g-1 at 2.0 A g-1) and one of the best long-term stabilities (125.7 mAh g-1 after 4,000 cycles at 1.0 A g-1) in AABs. Via molecular exploitation, this work paves the new direction toward high-performance cathode materials in aqueous multivalent-ion battery systems.
RESUMEN
Flexible broadband photodetectors are desired but challenging to be fabricated for next-generation wearable intelligent optoelectronic devices. Considering the narrow bandgap and strong light absorption, molybdenum telluride (MoTe2) based photoelectrochemical photodetectors are successfully assembled by liquid phase exfoliation accompanied with the electrophoretic deposited method. This MoTe2-based photodetector shows a broadband detection in ultraviolet-near-infrared band, long-term stability within 18000 s, and fast response in millisecond-level (response time≈19 ms, recovery time≈26 ms). More importantly, even though the MoTe2 photodetector is bent and twisted at a high degree for several hundred times, it still shows excellent flexibility with stable on-off switching characteristics. Additionally, this photodetector displays a good response for rotation angles in the range from 0° to 360°, and the extracted Iph maintain almost the same value approximately 0.97 µA cm-2, suggesting an omnidirectional detection capability. This work demonstrates the proposed flexible photoanode shows a great potential in future broadband omnidirectional detection systems.
RESUMEN
Zinc (Zn)-based materials are cost-effective and promising single-metal catalysts for CO2 electroreduction to CO but is still challenged by low selectivity and long-term stability. Undercoordinated Zn (Znδ+) sites have been demonstrated to be powerful active centers with appropriate *COOH affinity for efficient CO production However, electrochemical reduction conditions generally cause the inevitable reduction of Znδ+, resulting in the decline of CO efficiency over prolonged operation. Herein, a Zn cyanamide (ZnNCN) catalyst is constructed for highly selective and durable CO2 electroreduction, wherein the delocalized Zn d-electrons and resonant structure of cyanamide ligand prevent the self-reduction of ZnNCN and maintain Znδ+ sites under cathodic conditions. The mechanism studies based on density functional theory and operando spectroscopies indicate that delocalized Znδ+ site can stabilize the key *COOH intermediate through hard-soft acid-base theory, therefore thermodynamically promoting CO2-to-CO conversion. Consequently, ZnNCN delivers a CO Faradaic efficiency (FE) of up to 93.9% and further exhibits a remarkable stability lifespan of 96 h, representing a significant advancement in developing robust Zn-based electrocatalysts. Beyond expanding the variety of CO2 reduction catalysts, this work also offers insights into understanding the structure-function sensitivity and controlling dynamic active sites.
RESUMEN
Neutral electrolysis to produce hydrogen is prime challenging owing to the sluggish kinetics of water dissociation for the electrochemical reduction of water to molecular hydrogen. An ion-enriched electrode/electrolyte interface for electrocatalytic reactions can efficiently obtain a stable electrolysis system. Herein, we found that interfacial accumulated fluoride ions and the anchored Pt single atoms/nanoparticles in catalysts can improve hydrogen evolution reaction (HER) activity of NiFe-based hydroxide catalysts, prolonging the operating stability at high current density in neutral conditions. NiFe hydroxide electrode obtains an outstanding performance of 1000 mA cm-2 at low overpotential of 218 mV with 1000 h operation at 100 mA cm-2. Electrochemical experiments and theoretical calculations have demonstrated that the interfacial fluoride contributes to promote the adsorption of Pt to proton for sustaining a large current density at low potential, while the Pt single atoms/nanoparticles provide H adsorption sites. The synergy effect of F and Pt species promotes the formation of PtâH and FâH bonds, which accelerate the adsorption and dissociation process of H2O and promote the HER reaction with a long-term durability in neutral conditions.
RESUMEN
Despite the importance of the stability of the 2D catalysts in harsh electrolyte solutions, most studies have focused on improving the catalytic performance of molybdenum disulfide (MoS2) catalysts rather than the sustainability of hydrogen evolution. In previous studies, the vulnerability of MoS2 crystals is reported that the moisture and oxygen molecules can cause the oxidation of MoS2 crystals, accelerating the degradation of crystal structure. Therefore, optimization of catalytic stability is crucial for approaching practical applications in 2D catalysts. Here, it is proposed that monolayered MoS2 catalysts passivated with an atomically thin hexagonal boron nitride (h-BN) layer can effectively sustain hydrogen evolution reaction (HER) and demonstrate the ultra-high current density (500 mA cmâ»2 over 11 h) and super stable (64 h at 150 mA cmâ»2) catalytic performance. It is further confirmed with density functional theory (DFT) calculations that the atomically thin h-BN layer effectively prevents direct adsorption of water/acid molecules while allowing the protons to be adsorbed/penetrated. The selective penetration of protons and prevention of crystal structure degradation lead to maintained catalytic activity and maximized catalytic stability in the h-BN covered MoS2 catalysts. These findings propose a promising opportunity for approaching the practical application of 2D MoS2 catalysts having long-term stability at high-current operation.
RESUMEN
Rechargeable zinc-air batteries (RZABs) are an ideal substitute for energy storage, but the short cycle longevity during long-term charge/discharge operation is one of the bottleneck factors that seriously restrict commercial application. Herein, the FeCo alloy/N, S co-doped carbon aerogel (NSCA/FeCo) were prepared as catalysts of cathode for RZABs. We investigated the polarization and impedance on long-term cycles during the battery operation to explore the attenuation mechanism. The results indicated that the roundtrip efficiency of batteries during charge/discharge cycles reduced fast initially and then slow. Besides, the comparative experiment was tested through the replacement of a new electrolyte and a zinc sheet. It is manifested that the failure of the battery is mainly due to the attenuation of the air cathode performance. Therefore, to further disclose the influencing factors and internal mechanisms of air cathode performance degradation, we conducted a series of characterization and testing, including the hydrophilicity, surface morphology, elemental composition, and electrochemical performance of three-electrode systems at different cycle times. This work not only provides a theoretical basis for deeply comprehending the attenuation mechanism of the cathode but also serves a reference for the material design and operating condition optimization of RZABs.
RESUMEN
One way to increase the slow dissolution rate and the associated low bioavailability of newly developed active pharmaceutical ingredients (APIs) is to dissolve the API in a polymer, leading to a so-called amorphous solid dispersion (ASD). However, APIs are often supersaturated in ASDs and thus tend to crystallize during storage. The kinetics of the crystallization process is determined by the amount of water the ASD absorbs during storage at relative humidity (RH), storage temperature, polymer type, and the drug load of the ASD. Here, the crystallization kinetics and shelf life of spray-dried ASDs were investigated for ASDs consisting of nifedipine (NIF) or celecoxib (CCX) as the APIs and of poly(vinylpyrrolidone-co-vinyl acetate) or hydroxypropyl methylcellulose acetate succinate as polymers. Samples were stored over 2 years at different RHs covering conditions above and below the glass transition of the wet ASDs. Crystallization kinetics and onset time of the crystallization were qualitatively studied by using powder X-ray diffraction and microscopic inspection and were quantitatively determined by using differential scanning calorimetry. It was found that the NIF ASDs crystallize much faster than CCX ASDs at the same drug load and at the same storage conditions due to both higher supersaturation and higher molecular mobility in the NIF ASDs. Experimental data on crystallization kinetics were correlated using the Johnson-Mehl-Avrami-Kolmogorov equation. A detailed thermodynamic and kinetic modeling will be performed in Part 2 of this paper series.
Asunto(s)
Polímeros , Agua , Cristalización , Agua/química , Estabilidad de Medicamentos , Solubilidad , Polímeros/químicaRESUMEN
Long term stability, high responsivity, and fast response speed are essential for the commercialization of graphene photodetectors (GPDs). In this work, a parylene/graphene UV photodetector with long term stability, ultrahigh responsivity and fast response speed, is demonstrated. Parylene as a stable physical and chemical insulating layer reduces the environmental sensitivity of graphene, and enhances the performances of GPDs. In addition, utilizing bilayer electrodes reduces the buckling and damage of graphene after transferring. The parylene/graphene UV photodetector exhibits an ultrahigh responsivity of 5.82 × 105AW-1under 325 nm light irradiation at 1 V bias. Additionally, it shows a fast response speed with a rise time of 80µs and a fall time of 17µs, and a long term stability at 405 nm wavelength which is absent in the device without parylene. The parylene/graphene UV photodetector possesses superior performances. This paves the way for the commercial application of the high-performance graphene hybrid photodetectors, and provides a practical method for maintaining the long term stability of two dimensional (2D) materials.
RESUMEN
BACKGROUND: Faecal microbiota transplantation (FMT) is an established treatment for Clostridioides difficile infection and is under investigation for other conditions. The availability of suitable donors and the logistics of fresh stool preparation present challenges, making frozen, biobanked stools an attractive alternative. AIMS: This study aimed to evaluate the long-term viability of bacterial populations in faecal samples stored at -80°C for up to 12 months, supporting the feasibility of using frozen grafts for FMT. METHODS: Fifteen faecal samples from nine healthy donors were processed, mixed with cryoprotectants and stored at -80°C. Samples were assessed at baseline and after 3, 6 and 12 months using quantitative culturing methods to determine the concentration of live bacteria. RESULTS: Quantitative analysis showed no significant decrease in bacterial viability over the 12-month period for both aerobic and anaerobic cultures (p = 0.09). At all timepoints, the coefficients of variability in colony-forming unit (CFU) counts were greater between samples (102 ± 21% and 100 ± 13% for aerobic and anaerobic cultures, respectively) than the variability between measurements of the same sample (30 ± 22% and 30 ± 19%). CONCLUSIONS: The study confirmed that faecal microbiota can be preserved with high viability in deep-freeze storage for up to a year, making allogenic FMT from biobanked samples a viable and safer option for patients. However, a multidonor approach may be beneficial to mitigate the risk of viability loss in any single donor sample.
Asunto(s)
Trasplante de Microbiota Fecal , Heces , Viabilidad Microbiana , Humanos , Trasplante de Microbiota Fecal/métodos , Heces/microbiología , Congelación , Criopreservación/métodos , MasculinoRESUMEN
When treating posterior crossbite, the primary goal is to achieve long-term crossbite correction. The majority of studies however focus on relapse of the increase in the transverse dimension, but not relapse of the crossbite itself, which is an essential outcome. The aim of the present study was to determine long-term stability (2 years minimum post-treatment) of posterior crossbite correction, treated in mixed or early permanent dentitions of growing children. Following registration in PROSPERO (CRD42022348858), an electronic literature search including PubMed, Embase, Web of Science, the Cochrane Library, and a manual search were conducted up to January 2023, to identify longitudinal studies looking into the long-term stability of crossbite correction in growing children. Data extraction and risk of bias assessment were carried out, and subsequently, a random-effects meta-analyses models were used to calculate estimates for relapse of the crossbite and relapse at the transverse level. Twenty-two studies were included, of varying designs and quality, representing 1076 treated patients, with different expansion appliances and protocols. Meta-analysis results showed that 19.5% (95% CI: 15%; 25%) of patients present with relapse of posterior crossbite at long-term follow-up. At the transverse level, 19.3% of the total expansion (including overexpansion) relapsed (95% CI: 13%; 27%) regardless of whether there a was relapse of the crossbite itself. Data from existing studies, with a moderate level of evidence, indicate that the long-term stability of posterior crossbite correction in growing children is unfavourable in roughly 1 in 5 growing children, with crossbite relapse long-term. On average, 19% of the maxillary expansion performed (including overexpansion) relapses long-term, which may occur in cases with or without relapse of the crossbite.
Asunto(s)
Dentición Permanente , Maloclusión , Niño , Humanos , Maloclusión/terapia , Técnica de Expansión Palatina , Recurrencia , Dentición MixtaRESUMEN
PURPOSE: In the modeling of beam data for proton therapy planning systems, absolute dose measurements are performed utilizing a Bragg peak chamber (BPC), which is a parallel-plate ionization chamber. The long-term stability of the BPC is crucial for ensuring accurate absolute dose measurement. The study aims to assess the long-term stability of the BPC in clinical proton pencil beam scanning delivery. METHODS: The long-term stability evaluation focused on the BPC-Type 34070 (PTW Freiburg, Germany), utilizing clinical proton scanning beams from December 2022 to November 2023. Monthly investigations were conducted to evaluate the response and cross-calibration factor of the BPC and a reference chamber, employing the spread-out Bragg peak (SOBP) field. Additionally, assessments were made regarding the BPC's response to monoenergetic beams, along with an examination of the impact of polarity and ion recombination on the BPC. RESULTS: The response and cross-calibration factor of the BPC varied up to 1.9% and 1.8%, respectively, while the response of the reference chamber remained within a 0.5% range. The BPC's response to the mono-energetic beams varied up to 2.0% across all energies, demonstrating similar variation trends in both the SOBP field and mono-energetic beams. Furthermore, the variations in polarity and ion recombination effect remained stable within a 0.4% range throughout the year. Notably, the reproducibility of the BPC remained high for each measurement conducted, whether for the SOBP field or mono-energetic beams, with a maximum deviation observed at 0.1%. CONCLUSIONS: The response and cross-calibration factor of the BPC demonstrated significant variations, with maximum changes of 1.9% and 1.8%, respectively. However, the reproducibility of the BPC remained consistently high for each measurement. It is recommended that when conducting absolute dose measurements using a BPC, its response should be compared and corrected against the reference chamber for each measurement.
RESUMEN
OBJECTIVES: To identify predictors for long-term relapse of orthodontic therapy in patients with cleft lip and palate (CLP). MATERIALS AND METHODS: Patients with uni- and bilateral non-syndromal CLP were followed up at least two years after completion of their orthodontic therapy. Plaster casts of the start of treatment (T1), after completion of treatment (T2), and at follow-up (T3) were measured using the modified Huddart Bodenham Index. Characteristics of multidisciplinary therapy were taken from the patient files. Potentially influencing factors of relapse were investigated using logistic regression analyses and Spearman correlations. RESULTS: In total 58.07% of the included 31 patients showed a stable treatment outcome at follow-up after an average of 6.9 years. Even if relapse occurred, 61.54% of these patients still showed improvement regarding their occlusion compared to baseline. Predictors for the occurrence of relapse were the severity of dysgnathia at baseline (p = 0.039) and the extent of therapeutic change (p = 0.041). The extent of therapeutic change was additionally a predictor for the extent of post-therapeutic relapse (ρ = 0.425; p = 0.019). CONCLUSIONS: Patients with CLP benefit from their orthodontic therapy in the long term despite an increased tendency to relapse. CLINICAL RELEVANCE: Results of this long-term study could be used to adapt the treatment concept for patients with CLP and reinforce the significance of a patient-centered orthodontic treatment concept for affected patients.
Asunto(s)
Labio Leporino , Fisura del Paladar , Humanos , Estudios de Seguimiento , Labio Leporino/terapia , Fisura del Paladar/terapia , Atención Odontológica , Enfermedad CrónicaRESUMEN
Nanostructured bismuth vanadate (BiVO4) is at the forefront of emerging photoanodes in photoelectrochemical tandem devices for solar water splitting owing to the suitable band edge position and efficient charge separation capability. However, the (photo)chemical corrosion involving V5+ dissolution limits the long-term stability of BiVO4. Herein, guided by DFT calculations, we introduce an ALD-derived NiOx catalyst layer on BiVO4 to stabilize the surface Bi-O bonds, facilitate hole extraction, and thus suppress the V5+ dissolution. At the same time, the ALD NiOx catalyst layer could efficiently suppress the surface recombination and accelerate the surface OER kinetics, boosting the half-cell applied bias photon-to-current efficiency of BiVO4 to 2.05%, as well as a fill factor of 47.1%. By adding trace NaVO3 to the electrolyte, the NiOx/BiVO4 photoanode with an illumination area of 10.5 cm2 shows a record operational stability of more than 2100 h.
RESUMEN
Oleogels are semi-solid materials that consist primarily of liquid oil immobilized in a network of organized structural molecules, which provide stability and maintain the oil in the desired shape. Due to their structure, oleogels can stabilize large amounts of liquid, making them excellent carriers for active substances, both lipophilic and hydrophilic. This study presents the synthesis methodology and investigations of olive oil-based oleogels, which are among the healthiest and most valuable vegetable fats, rich in unsaturated fatty acids and antioxidants such as vitamin E. Two types of surfactants were used: TWEEN 80, which lowers surface tension and stabilizes emulsions, and SPAN 80, which acts in oil-dominated phases. The oleogels were enriched with lidocaine, an active substance commonly used as a pain reliever and local anesthetic. This research characterized the obtained oleogels regarding their medical applications, paying particular attention to the influence of surfactant type and amount as well as the active substance on their physicochemical properties. Structural analyses were also conducted using Fourier transform infrared (FTIR) spectroscopy, alongside rheological and sorption studies, and the wettability of the materials was evaluated. The stability of the obtained oleogels was verified using the MultiScan MS20 system, allowing for an assessment of their potential suitability for long-term pharmaceutical applications. The results indicated that SPAN-stabilized oleogels exhibited better stability and favorable mechanical properties, making them promising candidates for medical applications, particularly in pain relief formulations.
Asunto(s)
Emulsionantes , Lidocaína , Aceite de Oliva , Compuestos Orgánicos , Aceite de Oliva/química , Lidocaína/química , Compuestos Orgánicos/química , Emulsionantes/química , Polisorbatos/química , Reología , Espectroscopía Infrarroja por Transformada de Fourier , Humectabilidad , Tensoactivos/química , Hexosas/química , Emulsiones/química , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Thin films of the superconductor YBa2Cu3O7-δ (YBCO) were modified by low-energy light-ion irradiation employing collimated or focused He+ beams, and the long-term stability of irradiation-induced defects was investigated. For films irradiated with collimated beams, the resistance was measured in situ during and after irradiation and analyzed using a phenomenological model. The formation and stability of irradiation-induced defects are highly influenced by temperature. Thermal annealing experiments conducted in an Ar atmosphere at various temperatures demonstrated a decrease in resistivity and allowed us to determine diffusion coefficients and the activation energy ΔE=(0.31±0.03) eV for diffusive oxygen rearrangement within the YBCO unit cell basal plane. Additionally, thin YBCO films, nanostructured by focused He+-beam irradiation into vortex pinning arrays, displayed significant commensurability effects in magnetic fields. Despite the strong modulation of defect densities in these pinning arrays, oxygen diffusion during room-temperature annealing over almost six years did not compromise the signatures of vortex matching, which remained precisely at their magnetic fields predicted by the pattern geometry. Moreover, the critical current increased substantially within the entire magnetic field range after long-term storage in dry air. These findings underscore the potential of ion irradiation in tailoring the superconducting properties of thin YBCO films.