Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Genet Med ; : 101282, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39342494

RESUMEN

PURPOSE: The genetic underpinning of neurodevelopmental disorders (NDDs) in diverse ethnic populations, especially those with high rates of consanguinity, remains largely unexplored. Here, we aim to elucidate genomic insight from 576 well phenotyped and highly consanguineous (16%) NDD cohort. METHODS: We employed chromosomal microarray (CMA; N:247), exome sequencing (ES; N:127), combined CMA and ES (N:202) and long-read genome sequencing to identify genetic etiology. Deep clinical multi-variate data was coupled with genomic variants for stratification analysis. RESULTS: Genetic diagnosis rates were 17% with CMA, 29.92% with ES, and 37.13% with combined CMA and ES. Notably, children of consanguineous parents showed a significantly higher diagnostic yield (p<0.01) compared to those from non-consanguineous parents. Among the ES-identified pathogenic variants, 36.19% (38/105) were novel, implicating 35 unique genes. Long-read sequencing of seizure participants unresolved by combined test identified expanded FMR1 trinucleotide repeats. Additionally, we identified two recurrent X-linked variants in the G6PD in 3.65% (12/329) of NDD participants. These variants were absent in large population control cohorts and cohort comprising neurodevelopmental and neuropsychiatric populations of European descendants, indicating a possible associated risk factor potentially resulting from ancient genetic drift. CONCLUSION: This study unveils unique clinical and genomic insights from a consanguinity rich Bangladeshi NDD cohort, highlighting a strong association of G6PD with NDD in this population.

2.
Hum Genomics ; 17(1): 45, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37269011

RESUMEN

BACKGROUND: Haploinsufficiency of the transcription factor PAX6 is the main cause of congenital aniridia, a genetic disorder characterized by iris and foveal hypoplasia. 11p13 microdeletions altering PAX6 or its downstream regulatory region (DRR) are present in about 25% of patients; however, only a few complex rearrangements have been described to date. Here, we performed nanopore-based whole-genome sequencing to assess the presence of cryptic structural variants (SVs) on the only two unsolved "PAX6-negative" cases from a cohort of 110 patients with congenital aniridia after unsuccessfully short-read sequencing approaches. RESULTS: Long-read sequencing (LRS) unveiled balanced chromosomal rearrangements affecting the PAX6 locus at 11p13 in these two patients and allowed nucleotide-level breakpoint analysis. First, we identified a cryptic 4.9 Mb de novo inversion disrupting intron 7 of PAX6, further verified by targeted polymerase chain reaction amplification and sequencing and FISH-based cytogenetic analysis. Furthermore, LRS was decisive in correctly mapping a t(6;11) balanced translocation cytogenetically detected in a second proband with congenital aniridia and considered non-causal 15 years ago. LRS resolved that the breakpoint on chromosome 11 was indeed located at 11p13, disrupting the DNase I hypersensitive site 2 enhancer within the DRR of PAX6, 161 Kb from the causal gene. Patient-derived RNA expression analysis demonstrated PAX6 haploinsufficiency, thus supporting that the 11p13 breakpoint led to a positional effect by cleaving crucial enhancers for PAX6 transactivation. LRS analysis was also critical for mapping the exact breakpoint on chromosome 6 to the highly repetitive centromeric region at 6p11.1. CONCLUSIONS: In both cases, the LRS-based identified SVs have been deemed the hidden pathogenic cause of congenital aniridia. Our study underscores the limitations of traditional short-read sequencing in uncovering pathogenic SVs affecting low-complexity regions of the genome and the value of LRS in providing insight into hidden sources of variation in rare genetic diseases.


Asunto(s)
Aniridia , Factores de Transcripción Paired Box , Humanos , Factores de Transcripción Paired Box/genética , Proteínas de Homeodominio/genética , Proteínas Represoras/genética , Aniridia/genética , Inversión Cromosómica , Mutación
3.
Am J Hum Genet ; 105(1): 166-176, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31178126

RESUMEN

Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease characterized by eosinophilic intranuclear inclusions in the nervous system and multiple visceral organs. The clinical manifestation of NIID varies widely, and both familial and sporadic cases have been reported. Here we have performed genetic linkage analysis and mapped the disease locus to 1p13.3-q23.1; however, whole-exome sequencing revealed no potential disease-causing mutations. We then performed long-read genome sequencing and identified a large GGC repeat expansion within human-specific NOTCH2NLC. Expanded GGC repeats as the cause of NIID was further confirmed in an additional three NIID-affected families as well as five sporadic NIID-affected case subjects. Moreover, given the clinical heterogeneity of NIID, we examined the size of the GGC repeat among 456 families with a variety of neurological conditions with the known pathogenic genes excluded. Surprisingly, GGC repeat expansion was observed in two Alzheimer disease (AD)-affected families and three parkinsonism-affected families, implicating that the GGC repeat expansions in NOTCH2NLC could also contribute to the pathogenesis of both AD and PD. Therefore, we suggest defining a term NIID-related disorders (NIIDRD), which will include NIID and other related neurodegenerative diseases caused by the expanded GGC repeat within human-specific NOTCH2NLC.


Asunto(s)
Cuerpos de Inclusión Intranucleares/patología , Enfermedades Neurodegenerativas/patología , Receptores Notch/genética , Expansión de Repetición de Trinucleótido/genética , Adulto , Anciano , Femenino , Humanos , Cuerpos de Inclusión Intranucleares/genética , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/genética , Linaje , Secuenciación del Exoma
4.
Graefes Arch Clin Exp Ophthalmol ; 260(2): 645-653, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34427740

RESUMEN

PURPOSES: North Carolina macular dystrophy (NCMD) is a rare autosomal dominant inherited disorder characterized by macular impairment with a variety of phenotypic manifestations. The aims of this study were to assess the clinical features of a Chinese family with NCMD and to identify the underlying genetic cause of the disease. METHODS: Three patients from a Chinese family were included in this study. Detailed ophthalmological examinations were performed, including best corrected visual acuity (BCVA), slit lamp, dilated indirect ophthalmoscopy, fundus photography, optical coherence tomography (OCT), fundus autofluorescence, full-field electroretinography (ERG), and electrooculography (EOG). Genomic DNA was extracted from peripheral blood samples. Whole-genome sequencing and long-read genome sequencing were applied to detect the pathogenic variants. Sanger sequencing was performed to confirm the breakpoints. RESULTS: All three patients had macular involvement ranging from patchy yellowish-white lesions to big-area thinning, which are typical for NCMD. The BCVA ranged from 20/50 to 20/20. OCT revealed varying degrees of macular structure disorganization. The ERG responses were normal, and the Arden ration of the EOG was reduced. A novel 134.6 kb (g.99932464-100067110dup) tandem duplication on chromosome 6 (NC_000006.11) encompassing the entire CCNC and PRDM13 genes and a DNase 1 hypersensitivity site in the MCDR1 locus was identified. CONCLUSION: A novel large tandem duplication in MCDR1 locus was confirmed in a Chinese family with NCMD with a variety of macular phenotypes.


Asunto(s)
Distrofias Hereditarias de la Córnea , China/epidemiología , Electrorretinografía , Humanos , Linaje , Tomografía de Coherencia Óptica
5.
Int J Mol Sci ; 23(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36012658

RESUMEN

Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient's cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient's cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations.


Asunto(s)
Trastorno Autístico , Epilepsia , Osteoporosis , Proteínas Serina-Treonina Quinasas , Trastorno Autístico/genética , Mapeo Cromosómico , Epilepsia/genética , Humanos , Osteoporosis/genética , Proteínas Serina-Treonina Quinasas/genética , Translocación Genética
7.
Gigascience ; 10(5)2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34018554

RESUMEN

BACKGROUND: Genome sequencing of all known eukaryotes on Earth promises unprecedented advances in biological sciences and in biodiversity-related applied fields such as environmental management and natural product research. Advances in long-read DNA sequencing make it feasible to generate high-quality genomes for many non-genetic model species. However, long-read sequencing today relies on sizable quantities of high-quality, high molecular weight DNA, which is mostly obtained from fresh tissues. This is a challenge for biodiversity genomics of most metazoan species, which are tiny and need to be preserved immediately after collection. Here we present de novo genomes of 2 species of submillimeter Collembola. For each, we prepared the sequencing library from high molecular weight DNA extracted from a single specimen and using a novel ultra-low input protocol from Pacific Biosciences. This protocol requires a DNA input of only 5 ng, permitted by a whole-genome amplification step. RESULTS: The 2 assembled genomes have N50 values >5.5 and 8.5 Mb, respectively, and both contain ∼96% of BUSCO genes. Thus, they are highly contiguous and complete. The genomes are supported by an integrative taxonomy approach including placement in a genome-based phylogeny of Collembola and designation of a neotype for 1 of the species. Higher heterozygosity values are recorded in the more mobile species. Both species are devoid of the biosynthetic pathway for ß-lactam antibiotics known in several Collembola, confirming the tight correlation of antibiotic synthesis with the species way of life. CONCLUSIONS: It is now possible to generate high-quality genomes from single specimens of minute, field-preserved metazoans, exceeding the minimum contig N50 (1 Mb) required by the Earth BioGenome Project.


Asunto(s)
Artrópodos , Etanol , Animales , Artrópodos/genética , Genoma , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA