Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Prog Med Chem ; 61: 93-162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35753716

RESUMEN

Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.


Asunto(s)
Pulmón , Proteínas , Administración por Inhalación , Pulmón/metabolismo , Péptidos/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas/metabolismo
2.
Part Fibre Toxicol ; 18(1): 5, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478543

RESUMEN

BACKGROUND: Inhalation exposure to nanomaterials in workplaces can include a mixture of multiple nanoparticles. Such ambient nanoparticles can be of high dissolution or low dissolution in vivo and we wished to determine whether co-exposure to particles with different dissolution rates affects their biokinetics. METHODS AND RESULTS: Rats were exposed to biosoluble silver nanoparticles (AgNPs, 10.86 nm) and to biopersistent gold nanoparticles (AuNPs, 10.82 nm) for 28 days (6-h/day, 5-days/week for 4 weeks) either with separate NP inhalation exposures or with combined co-exposure. The separate NPs mass concentrations estimated by the differential mobility analyzer system (DMAS) were determined to be 17.68 ± 1.69 µg/m3 for AuNP and 10.12 ± 0.71 µg/m3 for AgNP. In addition, mass concentrations analyzed by atomic absorption spectrometer (AAS) via filter sampling were for AuNP 19.34 ± 2.55 µg/m3 and AgNP 17.38 ± 1.88 µg/m3 for separate exposure and AuNP 8.20 ± 1.05 µg/m3 and AgNP 8.99 ± 1.77 µg/m3 for co-exposure. Lung retention and clearance were determined on day 1 (6-h) of exposure (E-1) and on post-exposure days 1, 7, and 28 (PEO-1, PEO-7, and PEO-28, respectively). While the AgNP and AuNP deposition rates were determined to be similar due to the similarity of NP size of both aerosols, the retention half-times and clearance rates differed due to the difference in dissolution rates. Thus, when comparing the lung burdens following separate exposures, the AgNP retention was 10 times less than the AuNP retention at 6-h (E-1), and 69, 89, and 121 times lower less than the AuNP retention at PEO-1, PEO-7, and PEO-28, respectively. In the case of AuNP+AgNP co-exposure, the retained AgNP lung burden was 14 times less than the retained AuNP lung burden at E-1, and 26, 43, and 55 times less than the retained AuNP lung burden at PEO-1, PEO-7, and PEO-28, respectively. The retention of AuNP was not affected by the presence of AgNP, but AgNP retention was influenced in the presence of AuNP starting at 24 h after the first day of post day of exposure. The clearance of AgNPs of the separate exposure showed 2 phases; fast (T1/2 3.1 days) and slow (T1/2 48.5 days), while the clearance of AuNPs only showed one phase (T1/2 .81.5 days). For the co-exposure of AuNPs+AgNPs, the clearance of AgNPs also showed 2 phases; fast (T1/2 2.2 days) and slow (T1/2 28.4 days), while the clearance of AuNPs consistently showed one phase (T1/2 54.2 days). The percentage of Ag lung burden in the fast and slow clearing lung compartment was different between separate and combined exposure. For the combined exposure, the slow and fast compartments were each 50% of the lung burden. For the single exposure, 1/3 of the lung burden was cleared by the fast rate and 2/3 of the lung burden by the slow rate. CONCLUSIONS: The clearance of AgNPs follows a two- phase model of fast and slow dissolution rates while the clearance of AuNPs could be described by a one- phase model with a longer half-time. The co-exposure of AuNPs+AgNPs showed that the clearance of AgNPs was altered by the presence of AuNPs perhaps due to some interaction between AgNP and AuNP affecting dissolution and/or mechanical clearance of AgNP in vivo.


Asunto(s)
Nanopartículas del Metal , Material Particulado/toxicidad , Animales , Oro/toxicidad , Exposición por Inhalación/análisis , Pulmón , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Ratas , Plata/toxicidad
3.
J Nanobiotechnology ; 19(1): 19, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33430888

RESUMEN

BACKGROUND: Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. RESULTS: The developed nanosystem exhibited a particle size in the range of 228-255 nm and drug entrapment of 45-54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 µm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. CONCLUSIONS: Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects.


Asunto(s)
Antifúngicos/administración & dosificación , Clatrina/farmacología , Pulmón/efectos de los fármacos , Nanopartículas/química , Aspergilosis Pulmonar/tratamiento farmacológico , Voriconazol/administración & dosificación , Células A549 , Administración por Inhalación , Animales , Antifúngicos/química , Supervivencia Celular , Quitosano , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Lípidos , Pulmón/patología , Ratones Endogámicos BALB C , Tamaño de la Partícula , Polímeros/farmacología , Voriconazol/química
4.
Part Fibre Toxicol ; 17(1): 54, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33081787

RESUMEN

BACKGROUND: Information on particle deposition, retention, and clearance is important when evaluating the risk of inhaled nanomaterials to human health. The revised Organization Economic Cooperation and Development (OECD) inhalation toxicity test guidelines now require lung burden measurements of nanomaterials after rodent subacute and sub-chronic inhalation exposure (OECD 412, OECD 413) to inform on lung clearance behavior and translocation after exposure and during post-exposure observation (PEO). Lung burden measurements are particularly relevant when the testing chemical is a solid poorly soluble nanomaterial. Previously, the current authors showed that total retained lung burden of inhaled soluble silver nanoparticles (AgNPs) could be effectively measured using any individual lung lobe. METHODS AND RESULTS: Accordingly, the current study investigated the evenness of deposition/retention of poorly soluble gold nanoparticles (AuNPs) after 1 and 5 days of inhalation exposure. Rats were exposed nose-only for 1 or 5 days (6 h/day) to an aerosol of 11 nm well-dispersed AuNPs. Thereafter, the five lung lobes were separated and the gold concentrations measured using an inductively coupled plasma-mass spectrophotometer (ICP-MS). The results showed no statistically significant difference in the AuNP deposition/retention among the different lung lobes in terms of the gold mass per gram of lung tissue. CONCLUSIONS: Thus, it would seem that any rat lung lobe can be used for the lung burden analysis after short or long-term NP inhalation, while the other lobes can be used for collecting and analyzing the bronchoalveolar lavage fluid (BALF) and for the histopathological analysis. Therefore, combining the lung burden measurement, histopathological tissue preparation, and BALF assay from one rat can minimize the number of animals used and maximize the number of endpoints measured.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Oro/metabolismo , Pulmón , Nanopartículas del Metal/análisis , Administración por Inhalación , Aerosoles , Contaminantes Atmosféricos/toxicidad , Animales , Líquido del Lavado Bronquioalveolar , Oro/toxicidad , Exposición por Inhalación , Nanopartículas del Metal/toxicidad , Tamaño de la Partícula , Ratas , Plata/química , Plata/toxicidad , Distribución Tisular
5.
Eur J Pharm Sci ; 194: 106693, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38184016

RESUMEN

Inhalation enables the delivery of drugs directly to the lung, increasing the retention for prolonged exposure and maximizing the therapeutic index. However, the differential regional lung exposure kinetics and systemic pharmacokinetics are not fully known, and their estimation is critical for pulmonary drug delivery. The study evaluates the pharmacokinetics of hydroxychloroquine in different regions of the respiratory tract for multiple routes of administration. We also evaluated the influence of different inhaled formulations on systemic and lung pharmacokinetics by identifying suitable nebulizers followed by early characterization of emitted aerosol physicochemical properties. The salt- and freebase-based formulations required different nebulizers and generated aerosol with different physicochemical properties. An administration of hydroxychloroquine by different routes resulted in varied systemic and lung pharmacokinetics, with oral administration resulting in low tissue concentrations in all regions of the respiratory tract. A nose-only inhalation exposure resulted in higher and sustained lung concentrations of hydroxychloroquine with a lung parenchyma-to-blood ratio of 386 after 1440 min post-exposure. The concentrations of hydroxychloroquine in different regions of the respiratory tract (i.e., nasal epithelium, larynx, trachea, bronchi, and lung parenchyma) varied over time, indicating different retention kinetics. The spatiotemporal distribution of hydroxychloroquine in the lung is different due to the heterogeneity of cell types, varying blood perfusion rate, clearance mechanisms, and deposition of inhaled aerosol along the respiratory tract. In addition to highlighting the varied lung physiology, these results demonstrate the ability of the lung to retain increased levels of inhaled lysosomotropic drugs. Such findings are critical for the development of future inhalation-based therapeutics, aiming to optimize target site exposure, enable precision medicine, and ultimately enhance clinical outcomes.


Asunto(s)
Hidroxicloroquina , Nebulizadores y Vaporizadores , Ratas , Animales , Hidroxicloroquina/metabolismo , Distribución Tisular , Aerosoles , Administración por Inhalación , Pulmón/metabolismo , Sistemas de Liberación de Medicamentos
6.
Bioact Mater ; 33: 262-278, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38076650

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic inflammatory and fibrotic response-driven lung disease that is difficult to cure because it manifests excessive profibrotic cytokines (e.g., TGF-ß), activated myofibroblasts, and accumulated extracellular matrix (ECM). In an attempt to develop an inhalation formulation with enhanced antifibrotic efficacy, we sought to fabricate unique aerosolizable inhaled microgels (µGel) that contain nintedanib-poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs; n-PN) and pirfenidone-liposomes (p-LP). The aero-µGel was ∼12 µm, resisted phagocytosis by alveolar macrophages in vitro and in vivo, and protected inner-entrapped n-PN and p-LP. The n-PN/p-LP@aero-µGel caused enhanced/extended antifibrotic efficacy in a bleomycin-induced pulmonary fibrosis mouse presumably due to prolonged lung residence. Consequently, the results obtained by intratracheal aerosol insufflation of our n-PN/p-LP@aero-µGel twice a week were much better than those by as many as seven doses of single or mixed applications of n-PN or p-LP. The antifibrotic/pharmacokinetic results for the n-PN/p-LP@aero-µGel included reduced fibrosis progression, restored lung physiological functions, deactivated myofibroblasts, inhibited TGF-ß progression, and suppressed ECM component production (collagen I and α-SMA) along with prolonged lung retention time. We believe that our n-PN/p-LP@aero-µGel increased the local availability of both nintedanib and pirfenidone due to evasion of alveolar macrophage phagocytosis and prolonged lung retention with reduced systemic distribution. Through this approach, our inhalation formulation subsequently attenuated fibrosis progression and improved lung function. Importantly, these results hold profound implications in the therapeutic potential of our n-PN/p-LP@aero-µGel to serve as a clinically promising platform, providing significant advancements for improved treatment of many respiratory diseases including IFP.

7.
Eur J Pharm Biopharm ; 198: 114271, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537907

RESUMEN

Liposome is a promising carrier for pulmonary drug delivery and the nano-sized liposomes have been widely investigated in the treatment of lung diseases. However, there still lack the knowledge of micron-sized liposomes for lung delivery, which have more advantages in terms of drug loading and sustained drug release capacity. The micron-sized liposomes can be classified into multilamellar liposome (MLL) and multivesicular liposome (MVL) according to their microstructure, thus, this study focused on exploring how the micron-sized liposomes with different microstructure and phospholipid composition influence their interaction with the lung. The MLL and MVL were prepared from different types of phospholipids (including soya phosphatidylcholine (SPC), egg yolk phosphatidylcholine (EPC), and dipalmitoyl phosphatidylcholine (DPPC)) with geometric diameter around 5 µm, and their in vitro pulmonary cell uptake, in vivo lung retention and organ distribution were investigated. The results showed that the microstructure of liposomes didn't affect pulmonary cellular uptake, in vivo lung retention and organ distribution. MLL and MVL prepared with the same phospholipid had similar cellular uptake in both NR8383 cells and A549 cells, and both of them possessed prolonged lung retention and limited distribution in other organs during 72 h. Notably, the phospholipid type presented remarkable influence on liposomes' interaction with the lung. SPC-based liposomes exhibited higher cellular uptake than the DPPC-based ones in both NR8383 cells and A549 cells, also possessed a better lung retention behavior. In conclusion, this study might provide theoretical knowledge for designing micron-sized liposomes intended for lung delivery.


Asunto(s)
Liposomas , Fosfolípidos , Liposomas/química , Fosfolípidos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Pulmón/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-38758500

RESUMEN

Due to the unique physiological barriers within the lungs, there are considerable challenges in developing drug delivery systems enabling prolonged drug exposure to respiratory epithelial cells. Here, we report a PulmoSphere-based dry powder technology that incorporates a drug-phospholipid complex to promote intracellular retention of dehydroandrographolide succinate (DAS) in respiratory epithelial cells following pulmonary delivery. The DAS-phospholipid complex has the ability to self-assemble into nanoparticles. After spray-drying to produce PulmoSphere microparticles loaded with the drug-phospholipid complex, the rehydrated microparticles discharge the phospholipid complex without altering its physicochemical properties. The microparticles containing the DAS-phospholipid complex exhibit remarkable aerodynamic properties with a fine particle fraction of ∼ 60% and a mass median aerodynamic diameter of ∼ 2.3 µm. These properties facilitate deposition in the alveolar region. In vitro cell culture and lung tissue explants experiments reveal that the drug-phospholipid complex prolongs intracellular residence time and lung tissue retention due to the slow intracellular disassociation of drug from the complex. Once deposited in the lungs, the DAS-phospholipid complex loaded microparticles increase and extend drug exposure to the lung tissues and the immune cells compared to the free DAS counterpart. The improved drug exposure to airway epithelial cells, but not immune cells, is related to a prolonged duration of pulmonary anti-inflammation at decreased doses in a mouse model of acute lung injury induced by lipopolysaccharide. Overall, the phospholipid complex loaded microparticles present a promising approach for improved treatment of respiratory diseases, e.g. pneumonia and acute respiratory distress syndrome.

9.
Curr Med Chem ; 30(17): 1971-1992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35986533

RESUMEN

Bronchial asthma is the most common chronic respiratory illness, the incidence of which continues to increase annually. Currently, effective treatments for CS-resistant asthma and severe asthma are still lacking, and new therapeutic regimens are urgently required. PI3Kδ is a key enzyme in hematopoietic cells and represents a major target for oncology and inflammatory disease (particularly respiratory disease, asthma and COPD). In the case of respiratory disease, the ability to inhibit PI3Kδ in the lungs shows a higher safety and therapeutic index relative to systemic inhibition. In recent years, paradigm shifts have occurred in inhalation therapeutics for systemic and topical drug delivery due to the favorable properties of lungs, including their large surface area and high permeability. Pulmonary drug delivery possesses many advantages, including a non-invasive route of administration, low metabolic activity, a controlled environment for systemic absorption and the ability to avoid first bypassing metabolism. In this review, we focus on the discovery and development of inhaled drugs targeting PI3Kδ for asthma by focusing on their activity and selectivity, in addition to their potential in drug design strategies using inhaled administration.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Asma/tratamiento farmacológico , Pulmón , Administración por Inhalación , Resultado del Tratamiento
10.
ACS Appl Mater Interfaces ; 15(1): 479-493, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36583377

RESUMEN

Since most current studies have focused on exploring how phagocyte internalization of drug-loaded nanovesicles by macrophages would affect the function and therapeutic effects of infiltrated neutrophils or monocytes, research has evaluated the specificity of the inhaled nanovesicles for targeting various phagocytes subpopulations. In this study, liposomes with various charges (including neutral (L1), anionic (L2), and cationic at inflammatory sites (L3)) were constructed to investigate how particle charge determined their interactions with key phagocytes (including macrophages and neutrophils) in acute lung injury (ALI) models and to establish correlations with their biofate and overall anti-inflammatory effect. Our results clearly indicated that neutrophils were capable of rapidly sequestering L3 with a 3.2-fold increase in the cellular liposome distribution, compared to that in AMs, while 70.5% of L2 were preferentially uptaken by alveolar macrophages (AMs). Furthermore, both AMs and the infiltrated neutrophils performed as the potential vesicles for the inhaled liposomes to prolong their lung retention in ALI models, whereas AMs function as sweepers to recognize and process liposomes in the healthy lung. Finally, inhaled roflumilast-loaded macrophage or neutrophil preferential liposomes (L2 or L3) exhibited optimal anti-inflammatory effect because of the decreased AMs phagocytic capacity or the prolonged circulation times of neutrophils. Such findings will be beneficial in exploiting a potential pathway to specifically manipulate lung phagocyte functions in lung inflammatory diseases where these cells play crucial roles.


Asunto(s)
Lesión Pulmonar Aguda , Enfermedades Pulmonares , Neumonía , Humanos , Neutrófilos , Liposomas/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Neumonía/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/metabolismo
11.
Drug Discov Today ; 27(1): 134-150, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34547449

RESUMEN

Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.


Asunto(s)
Aerosoles/farmacología , Sistemas de Liberación de Medicamentos , Fármacos del Sistema Respiratorio/farmacología , Enfermedades Respiratorias/tratamiento farmacológico , Administración por Inhalación , Química Farmacéutica/métodos , Química Farmacéutica/tendencias , Sistemas de Liberación de Medicamentos/instrumentación , Sistemas de Liberación de Medicamentos/métodos , Humanos
12.
Eur J Pharm Biopharm ; 164: 93-104, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33957225

RESUMEN

Cisplatin is one of the most commonly used chemotherapy in lung cancer despite its high nephrotoxicity leading to an administration only every 3-4 weeks. This study is the first report of a preclinical investigation of therapeutic intensification combining a cisplatin dry powder for inhalation (CIS-DPI) with an intravenous (iv) cisplatin-based treatment. CIS-DPI with 50% cisplatin content (CIS-DPI-50) was developed using lipid excipients through scalable processes (high-speed and high-pressure homogenization and spray-drying). CIS-DPI-50 showed good aerodynamic performance (fine particle fraction of ~ 55% and a mass median aerodynamic particle size of ~ 2 µm) and a seven-fold increase and decrease in Cmax in the lungs and in plasma, respectively, in comparison with an iv cisplatin solution (CIS-iv) in healthy mice. Finally, the addition of CIS-DPI-50 to the standard cisplatin/paclitaxel iv doublet increased the response rate (67% vs 50%), decreased the tumour growth and prolonged the median survival (31 vs 21 days), compared to the iv doublet in the M109 lung carcinoma model tending to demonstrate a therapeutic intensification of cisplatin.


Asunto(s)
Cisplatino/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Polvos/administración & dosificación , Administración por Inhalación , Aerosoles/administración & dosificación , Animales , Desecación/métodos , Inhaladores de Polvo Seco/métodos , Excipientes/administración & dosificación , Femenino , Pulmón/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula
13.
Acta Biomater ; 123: 325-334, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33454386

RESUMEN

Polyethylene glycol (PEG) modification is one of the promising approaches to overcome both mucus and alveolar macrophage uptake barriers in the deep lung for sustained therapy of pulmonary diseases such as asthma. To investigate the feasibility of using PEG-modified microspheres to bypass both barriers, we prepared a collection of polyethylene glycol-distearoyl glycero-phosphoethanolamine (PEG-DSPE)-modified poly (lactide-co-glycolide) (PLGA) microspheres bearing specific PEG molecular weights (0.75, 2, 5, and 10 kDa) and PEG-DSPE/PLGA molar ratios (0.25:1 and 1:1). Drug release, mucus penetration, and macrophage uptake were evaluated in vitro, and the corresponding in vivo activities of microspheres in rats were investigated. It was found that the PEG2000-DSPE/PLGA 1:1 group showed enhanced mucus permeability and reduced macrophage uptake in vitro compared to the PEG2000-DSPE/PLGA 0.25:1 group. At high PEG molar ratios, only the PEG 2000-based group showed significantly prolonged lung retention in vivo compared to the control group. The systemic exposure of the PEG2000-DSPE/PLGA 1:1 group was significantly lower than that of the PEG2000-DSPE/PLGA 0.25:1 group (39% of AUC reduction). Additionally, when using the same molar ratio of 1:1, the PEG 2000 group significantly lowered the systemic drug exposure compared to that of the PEG 5000 and 10000 groups (48% and 33% of AUC reduction, respectively), thus making it a promising sustained lung delivery candidate for pulmonary disease treatment.


Asunto(s)
Nanopartículas , Animales , Liberación de Fármacos , Pulmón , Microesferas , Polietilenglicoles , Ratas
14.
J Aerosol Med Pulm Drug Deliv ; 33(1): 43-53, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31364961

RESUMEN

Background: For the treatment of respiratory disease, inhaled drug delivery aims to provide direct access to pharmacological target sites while minimizing systemic exposure. Despite this long-held tenet of inhaled therapeutic advantage, there are limited data of regional drug localization in the lungs after inhalation. The aim of this study was to investigate the distribution and retention of different chemotypes typifying available inhaled drugs [slowly dissolving neutral fluticasone propionate (FP) and soluble bases salmeterol and salbutamol] using mass spectrometry imaging (MSI). Methods: Salmeterol, salbutamol, and FP were simultaneously delivered by inhaled nebulization to rats. In the same animals, salmeterol-d3, salbutamol-d3, and FP-d3 were delivered by intravenous (IV) injection. Samples of lung tissue were obtained at 2- and 30-minute postdosing, and high-resolution MSI was used to study drug distribution and retention. Results: IV delivery resulted in homogeneous lung distribution for all molecules. In comparison, while inhalation also gave rise to drug presence in the entire lung, there were regional chemotype-dependent areas of higher abundance. At the 30-minute time point, inhaled salmeterol and salbutamol were preferentially retained in bronchiolar tissue, whereas FP was retained in all regions of the lungs. Conclusion: This study clearly demonstrates that inhaled small molecule chemotypes are differentially distributed in lung tissue after inhalation, and that high-resolution MSI can be applied to study these retention patterns.


Asunto(s)
Albuterol/farmacocinética , Fluticasona/farmacocinética , Pulmón/metabolismo , Xinafoato de Salmeterol/farmacocinética , Administración por Inhalación , Albuterol/administración & dosificación , Animales , Broncodilatadores/administración & dosificación , Broncodilatadores/farmacocinética , Sistemas de Liberación de Medicamentos , Fluticasona/administración & dosificación , Pulmón/diagnóstico por imagen , Masculino , Espectrometría de Masas , Ratas , Ratas Wistar , Xinafoato de Salmeterol/administración & dosificación , Distribución Tisular
15.
J Control Release ; 325: 206-222, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32619747

RESUMEN

The relationship between the particle size and lung retention time of inhaled nanocarriers was unclear, and this uncertainty hampered the design of nanocarriers for pulmonary delivery. The debate resulted from a lack of knowledge regarding the integrity of the involved nanocarriers. A distinguishable bioimaging probe which could differentiate between integrated and disintegrated nanocarriers by emitting different signals was introduced to address this problem. The aza-BODIPY structured aggregation-caused quenching (ACQ) probes were promising candidates, because they showed intense fluorescence signals in intact nanocarriers while quenched after the decomposition of nanocarriers. This attribute was called an on-off switch. In this paper, ACQ probes were encapsulated into a solid lipid nanoparticle suspension (SLNS) with different particle sizes (120-480 nm), and the relationship between particle size and lung retention time after pulmonary delivery was investigated in BALB/c mice. The results showed that a larger particle size led to a longer lung retention time. By comparing with the results of a non-water-quenching probe, the SLNS systems were found to be mostly intact in the pulmonary region. These findings will serve as a firm basis for the design and development of nanocarriers for pulmonary delivery.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Animales , Sistemas de Liberación de Medicamentos , Lípidos , Pulmón , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Suspensiones
16.
Pharmaceutics ; 12(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365674

RESUMEN

Increasing affinity to lung tissue is an important strategy to achieve pulmonary retention and to prolong the duration of effect in the lung. As the lung is a very heterogeneous organ, differences in structure and blood flow may influence local pulmonary disposition. Here, a novel lung preparation technique was employed to investigate regional lung distribution of four drugs (salmeterol, fluticasone propionate, linezolid, and indomethacin) after intravenous administration in rats. A semi-mechanistic model was used to describe the observed drug concentrations in the trachea, bronchi, and the alveolar parenchyma based on tissue specific affinities (Kp) and blood flows. The model-based analysis was able to explain the pulmonary pharmacokinetics (PK) of the two neutral and one basic model drugs, suggesting up to six-fold differences in Kp between trachea and alveolar parenchyma for salmeterol. Applying the same principles, it was not possible to predict the pulmonary PK of indomethacin, indicating that acidic drugs might show different pulmonary PK characteristics. The separate estimates for local Kp, tracheal and bronchial blood flow were reported for the first time. This work highlights the importance of lung physiology- and drug-specific parameters for regional pulmonary tissue retention. Its understanding is key to optimize inhaled drugs for lung diseases.

17.
Toxicol Rep ; 6: 279-287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984565

RESUMEN

The paper retraces the development of a mechanistic multicompartmental system model describing particle retention in lungs under chronic inhalation exposures. This model was first developed and experimentally tested for various conditions of exposure to polydisperse dusts of SiO2 or TiO2. Later on it was successfully used as a basis for analyzing patterns in the retention of nanoparticles having different chemical compositions (Fe2O3, SiO2, NiO). This is the first publication presenting the outcomes of modeling lung retention of nickel oxide nano-aerosols under chronic inhalation exposure. The most significant adaptation of the above-mentioned model to the conditions of exposure to metal-oxide nanoparticles is associated with the need to describe mathematically not only the physiological mechanisms of their elimination but also their solubilization "in vivo" bearing in mind that the relative contribution of the latter may be different for nanoparticles of different nature and predominant in some cases. Using nickel oxide as an example, it is suggested as well that damage to the physiological pulmonary clearance mechanisms by particularly toxic nanoparticles may result in lung toxicokinetics becoming nonlinear.

18.
Eur J Pharm Biopharm ; 143: 70-79, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31446045

RESUMEN

Controlled drug delivery to the lungs is promising with plentiful advantages over current rapid release products. However, alveolar macrophage clearance has severely hindered the application of inhaled controlled release preparations. The objective of our study was to explore the feasibility to decorate poly(lactide-co-glycolide) (PLGA) microparticles with endogenous phospholipids found in the deep lungs, thus, to regulate the interplay with alveolar macrophages. The influence of the phospholipid amount and type on macrophage uptake of PLGA microparticles was investigated systemically under both in vitro (RAW264.7 and NR8383) and in vivo conditions. The uptake rate (k) by macrophages, in vivo elimination rate from the bronchoalveolar lavage fluid (k') and elimination rate from the whole lung (k″) were used as parameters for evaluation. Our data showed that a modification with dipalmitoyl phosphatidylcholine (DPPC) enhanced the macrophage phagocytosis significantly over the unmodified counterparts. Thereafter, using the same modification ratio, remarkable enhancement of macrophage uptake was found in the presence of different types of other phospholipids, especially with distearoyl phosphatidylethanolamine (DSPE). When replaced by a poly(ethylene glycol)-conjugated version of DSPE the uptake of the modified PLGA microparticles was reduced by ~200%. Meanwhile, the drug content in the lung tissue was improved by 3-fold (area under the curve value). Finally, it was possible to establish a correlation between in vitro phagocytosis and in vivo lung elimination rate for the investigated formulations. Overall, our study demonstrated that phospholipids play an important role in modulating the clearance of microparticle-based drug delivery vehicles, which gives a meaningful insight into the development of prolonged drug release system for inhalation.


Asunto(s)
Macrófagos Alveolares/metabolismo , Fosfolípidos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , 1,2-Dipalmitoilfosfatidilcolina/química , Administración por Inhalación , Animales , Línea Celular , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Pulmón/metabolismo , Ratones , Fagocitosis/efectos de los fármacos , Fosfatidilgliceroles/química , Polietilenglicoles/química , Células RAW 264.7
19.
Drug Deliv ; 25(1): 838-845, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29587546

RESUMEN

Treatment of respiratory disease with a drug delivered via inhalation is generally held as being beneficial as it provides direct access to the lung target site with a minimum systemic exposure. There is however only limited information of the regional localization of drug retention following inhalation. The aim of this study was to investigate the regional and histological localization of salmeterol retention in the lungs after inhalation and to compare it to systemic administration. Lung distribution of salmeterol delivered to rats via nebulization or intravenous (IV) injection was analyzed with high-resolution mass spectrometry imaging (MSI). Salmeterol was widely distributed in the entire section at 5 min after inhalation, by 15 min it was preferentially retained in bronchial tissue. Via a novel dual-isotope study, where salmeterol was delivered via inhalation and d3-salmeterol via IV to the same rat, could the effective gain in drug concentration associated with inhaled delivery relative to IV, expressed as a site-specific lung targeting factor, was 5-, 31-, and 45-fold for the alveolar region, bronchial sub-epithelium and epithelium, respectively. We anticipate that this MSI-based framework for quantifying regional and histological lung targeting by inhalation will accelerate discovery and development of local and more precise treatments of respiratory disease.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/administración & dosificación , Bronquios/metabolismo , Broncodilatadores/administración & dosificación , Pulmón/metabolismo , Alveolos Pulmonares/metabolismo , Mucosa Respiratoria/metabolismo , Xinafoato de Salmeterol/administración & dosificación , Administración por Inhalación , Agonistas de Receptores Adrenérgicos beta 2/metabolismo , Agonistas de Receptores Adrenérgicos beta 2/farmacocinética , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Bronquios/citología , Bronquios/diagnóstico por imagen , Bronquios/efectos de los fármacos , Broncodilatadores/metabolismo , Broncodilatadores/farmacocinética , Broncodilatadores/farmacología , Análisis por Conglomerados , Deuterio , Inyecciones Intravenosas , Pulmón/citología , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Masculino , Espectrometría de Masas , Imagen Molecular , Vehículos Farmacéuticos/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Polisorbatos/química , Alveolos Pulmonares/citología , Alveolos Pulmonares/diagnóstico por imagen , Alveolos Pulmonares/efectos de los fármacos , Ratas Wistar , Mucosa Respiratoria/citología , Mucosa Respiratoria/diagnóstico por imagen , Mucosa Respiratoria/efectos de los fármacos , Absorción a través del Sistema Respiratorio , Xinafoato de Salmeterol/metabolismo , Xinafoato de Salmeterol/farmacocinética , Xinafoato de Salmeterol/farmacología , Distribución Tisular
20.
J Biomed Nanotechnol ; 13(1): 99-09, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29373003

RESUMEN

The main objective of this study was to test the hypothesis that inhaled nanocrystals of a highly lipophilic drug could be used as a novel approach for producing sustained pulmonary delivery. Curcumin acetate, an ester prodrug of curcumin, was utilized as a highly lipophilic model drug. Curcumin acetate was subjected to wet ball milling to produce different particle sizes of nanocrystals and microparticles, and the milled curcumin acetate was spray-dried to yield similar inhalable microparticles. Following intrapulmonary administration in rats, pharmacokinetic experiments indicated that curcumin acetate significantly extended the pulmonary absorption time by 7.2-fold compared to curcumin, possibly due to the high lipophilicity of the former. The biodistribution data showed that aerosolized curcumin acetate nanocrystals 123.7 nm in size not only prolonged pulmonary retention, with the AUC value of curcumin acetate being 7.62-fold higher than that of the microparticles 1120 nm in size, but also increased the local in vivo release rate by 3.3-fold and the local availability of converted curcumin by 25.1-fold. In addition, the improved local availability resulted in better pharmacological efficacy in a monocrotaline-induced rat model of pulmonary arterial hypertension. This study was the first to demonstrate that inhalable nanocrystals are a feasible means for the sustained pulmonary delivery of highly lipophilic drugs.


Asunto(s)
Curcumina/farmacocinética , Portadores de Fármacos/farmacocinética , Pulmón/efectos de los fármacos , Nanopartículas/química , Administración por Inhalación , Animales , Curcumina/administración & dosificación , Curcumina/análisis , Curcumina/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Pulmón/química , Pulmón/metabolismo , Nanopartículas/administración & dosificación , Tamaño de la Partícula , Ratas , Ratas Wistar , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA