Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 69(2): 182-196, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37098022

RESUMEN

Asthma is a heterogeneous chronic airway disease with an unmet need for improved therapeutics in uncontrolled severe disease. The calcium-sensing receptor (CaSR) is a G protein-coupled receptor upregulated in asthma. The CaSR agonist, spermine, is also increased in asthmatic airways and contributes to bronchoconstriction. CaSR negative allosteric modulators (NAMs) oppose chronic airway inflammation, remodeling, and hyperresponsiveness in murine and guinea pig asthma models, but whether CaSR NAMs are effective acute bronchodilators compared with standard of care has not yet been established. Furthermore, the ability of different classes of NAMs to inhibit spermine-induced CaSR signaling or methacholine (MCh)-induced airway contraction has not been quantified. Here, we show CaSR NAMs differentially inhibit spermine-induced intracellular calcium mobilization and inositol monophosphate accumulation in HEK293 cells stably expressing the CaSR. NAMs reverse MCh-mediated airway contraction in mouse precision-cut lung slices with similar maximal relaxation compared with the standard treatment, salbutamol. Of note, the bronchodilator effects of CaSR NAMs are maintained under conditions of ß2-adrenergic receptor desensitization when salbutamol efficacy is abolished. Furthermore, overnight treatment with some, but not all, CaSR NAMs prevents MCh-mediated bronchoconstriction. These findings further support the CaSR as a putative drug target and NAMs as alternative or adjunct bronchodilators in asthma.


Asunto(s)
Asma , Broncodilatadores , Ratones , Humanos , Animales , Cobayas , Broncodilatadores/farmacología , Receptores Sensibles al Calcio/agonistas , Receptores Sensibles al Calcio/metabolismo , Células HEK293 , Espermina/uso terapéutico , Asma/tratamiento farmacológico , Asma/metabolismo , Albuterol/farmacología , Cloruro de Metacolina/farmacología
2.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L114-L124, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278410

RESUMEN

Intrapulmonary arteries located in the proximal lung differ from those in the distal lung in size, cellular composition, and the surrounding microenvironment. However, whether these structural variations lead to region-specific regulation of vasoreactivity in homeostasis and following injury is unknown. Herein, we employ a two-step method of precision-cut lung slice (PCLS) preparation, which maintains almost intact intrapulmonary arteries, to assess contractile and relaxation responses of proximal preacinar arteries (PaAs) and distal intraacinar arteries (IaAs) in mice. We found that PaAs exhibited robust vasoconstriction in response to contractile agonists and significant nitric oxide (NO)-induced vasodilation. In comparison, IaAs were less contractile and displayed a greater relaxation response to NO. Furthermore, in a mouse model of pulmonary arterial hypertension (PAH) induced by chronic exposure to ovalbumin (OVA) allergen and hypoxia (OVA-HX), IaAs demonstrated a reduced vasocontraction despite vascular wall thickening with the emergence of new αSMA+ cells coexpressing markers of pericytes. In contrast, PaAs became hypercontractile and less responsive to NO. The reduction in relaxation of PaAs was associated with decreased expression of protein kinase G, a key component of the NO pathway, following chronic OVA-HX exposure. Taken together, the PCLS prepared using the modified preparation method enables functional evaluation of pulmonary arteries in different anatomical locations and reveals region-specific mechanisms underlying the pathophysiology of PAH in a mouse model.NEW & NOTEWORTHY Utilizing mouse precision-cut lung slices with preserved intrapulmonary vessels, we demonstrated a location-dependent structural and contractile regulation of pulmonary arteries in health and on noxious stimulations. For instance, chronic ovalbumin and hypoxic exposure increased pulmonary arterial pressure (PAH) by remodeling intraacinar arterioles to reduce vascular wall compliance while enhancing vasoconstriction in proximal preacinar arteries. These findings suggest region-specific mechanisms and therapeutic targets for pulmonary vascular diseases such as PAH.


Asunto(s)
Lesión Pulmonar , Ratones , Animales , Lesión Pulmonar/metabolismo , Ovalbúmina , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Vasodilatación/fisiología , Vasoconstricción/fisiología , Óxido Nítrico/metabolismo , Hipoxia/metabolismo
3.
J Allergy Clin Immunol ; 149(5): 1643-1654.e8, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34800431

RESUMEN

BACKGROUND: Allergen-induced airway hyperresponsiveness in neonatal mice, but not adult mice, is caused by elevated innervation and consequent cholinergic hyperstimulation of airway smooth muscle (ASM). Whether this inflammation-independent mechanism contributes to ASM hypercontraction in childhood asthma warrants investigation. OBJECTIVE: We aimed to establish the functional connection between cholinergic stimulation and ASM contractility in different human age groups. METHODS: First, we used a neonatal mouse model of asthma to identify age-related mediators of cholinergic deregulation of ASM contractility. Next, we conducted validation and mechanistic studies in primary human ASM cells and precision-cut lung slices from young (<5 years old) and adult (>20 years old) donor lungs. Finally, we evaluated the therapeutic potential of the identified cholinergic signaling mediators using culture models of human ASM hypercontraction. RESULTS: ASM hypercontraction due to cholinergic deregulation in early postnatal life requires CD38. Mechanistically, cholinergic signaling activates the phosphatidylinositol 3-kinase/protein kinase B pathway in immature ASM cells to upregulate CD38 levels, thereby augmenting the Ca2+ response to contractile agonists. Strikingly, this early-life, CD38-mediated ASM hypercontraction is not alleviated by the ß-agonist formoterol. CONCLUSIONS: The acetylcholine-phosphatidylinositol 3-kinase/protein kinase B-CD38 axis is a critical mechanism of airway hyperresponsiveness in early postnatal life. Targeting this axis may provide a tailored treatment for children at high risk for allergic asthma.


Asunto(s)
Asma , Hipersensibilidad Respiratoria , ADP-Ribosil Ciclasa 1 , Animales , Asma/metabolismo , Colinérgicos , Humanos , Pulmón , Glicoproteínas de Membrana , Ratones , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hipersensibilidad Respiratoria/metabolismo
4.
Am J Respir Cell Mol Biol ; 67(4): 482-490, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35776523

RESUMEN

Asthma is a common respiratory disease characterized, in part, by excessive airway smooth muscle (ASM) contraction (airway hyperresponsiveness). Various GABAAR (γ-aminobutyric acid type A receptor) activators, including benzodiazepines, relax ASM. The GABAAR is a ligand-operated Cl- channel best known for its role in inhibitory neurotransmission in the central nervous system. Although ASM cells express GABAARs, affording a seemingly logical site of action, the mechanism(s) by which GABAAR ligands relax ASM remains unclear. PI320, a novel imidazobenzodiazepine designed for tissue selectivity, is a promising asthma drug candidate. Here, we show that PI320 alleviates methacholine (MCh)-induced bronchoconstriction in vivo and relaxes peripheral airways preconstricted with MCh ex vivo using the forced oscillation technique and precision-cut lung slice experiments, respectively. Surprisingly, the peripheral airway relaxation demonstrated in precision-cut lung slices does not appear to be GABAAR-dependent, as it is not inhibited by the GABAAR antagonist picrotoxin or the benzodiazepine antagonist flumazenil. Furthermore, we demonstrate here that PI320 inhibits MCh-induced airway constriction in the absence of external Ca2, suggesting that PI320-mediated relaxation is not mediated by inhibition of Ca2+ influx in ASM. However, PI320 does inhibit MCh-induced intracellular Ca2+ oscillations in peripheral ASM, a key mediator of contraction that is dependent on sarcoplasmic reticulum Ca2+ mobilization. Furthermore, PI320 inhibits peripheral airway constriction induced by experimentally increasing the intracellular concentration of inositol triphosphate (IP3). These novel data suggest that PI320 relaxes murine peripheral airways by inhibiting intracellular Ca2+ mobilization in ASM, likely by inhibiting Ca2+ release through IP3Rs (IP3 receptors).


Asunto(s)
Asma , Calcio , Animales , Asma/tratamiento farmacológico , Asma/metabolismo , Calcio/metabolismo , Señalización del Calcio , Flumazenil/metabolismo , Inositol/metabolismo , Ligandos , Pulmón/metabolismo , Cloruro de Metacolina/farmacología , Ratones , Contracción Muscular , Músculo Liso/metabolismo , Picrotoxina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
5.
J Cell Physiol ; 236(9): 6407-6423, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33559206

RESUMEN

Bitter taste receptors (TAS2Rs) and their signaling elements are detected throughout the body, and bitter tastants induce a wide variety of biological responses in tissues and organs outside the mouth. However, the roles of TAS2Rs in these responses remain to be tested and established genetically. Here, we employed the CRISPR/Cas9 gene-editing technique to delete three bitter taste receptors-Tas2r143/Tas2r135/Tas2r126 (i.e., Tas2r triple knockout [TKO]) in mice. The fidelity and effectiveness of the Tas2r deletions were validated genetically at DNA and messenger RNA levels and functionally based on the tasting of TAS2R135 and TAS2R126 agonists. Bitter tastants are known to relax airways completely. However, TAS2R135 or TAS2R126 agonists either failed to induce relaxation of pre-contracted airways in wild-type mice and Tas2r TKO mice or relaxed them dose-dependently, but to the same extent in both types of mice. These results indicate that TAS2Rs are not required for bitter tastant-induced bronchodilation. The Tas2r TKO mice also provide a valuable model to resolve whether TAS2Rs mediate bitter tastant-induced responses in many other extraoral tissues.


Asunto(s)
Eliminación de Gen , Relajación Muscular , Receptores Acoplados a Proteínas G/genética , Gusto/fisiología , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Ligandos , Cloruro de Metacolina/farmacología , Ratones Noqueados , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , Gusto/efectos de los fármacos , Lengua/efectos de los fármacos , Lengua/metabolismo
6.
Respir Res ; 22(1): 265, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34666752

RESUMEN

RATIONALE: αv integrins, key regulators of transforming growth factor-ß activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvß6) and fibroblasts (αvß1) in fibrotic lungs. OBJECTIVES: We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS: Selective αvß6 and αvß1, dual αvß6/αvß1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-ß cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-ß signaling. Bleomycin-challenged mice treated with dual αvß6/αvß1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS: Inhibition of integrins αvß6 and αvß1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvß6/αvß1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS: In the fibrotic lung, dual inhibition of integrins αvß6 and αvß1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-ß.


Asunto(s)
Antifibróticos/farmacología , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Integrina alfa6beta1/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Receptores de Vitronectina/antagonistas & inhibidores , Animales , Bleomicina , Línea Celular , Técnicas de Cocultivo , Cadena alfa 1 del Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Integrina alfa6beta1/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fosforilación , Receptores de Vitronectina/metabolismo , Transducción de Señal , Proteína smad3/metabolismo
7.
Am J Respir Cell Mol Biol ; 62(1): 14-22, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513744

RESUMEN

Maintaining the three-dimensional architecture and cellular complexity of lung tissue ex vivo can enable elucidation of the cellular and molecular pathways underlying chronic pulmonary diseases. Precision-cut lung slices (PCLS) are one human-lung model with the potential to support critical mechanistic studies and early drug discovery. However, many studies report short culture times of 7-10 days. Here, we systematically evaluated poly(ethylene glycol)-based hydrogel platforms for the encapsulation of PCLS. We demonstrated the ability to support ex vivo culture of embedded PCLS for at least 21 days compared with control PCLS floating in media. These customized hydrogels maintained PCLS architecture (no difference), viability (4.7-fold increase, P < 0.0001), and cellular phenotype as measured by SFTPC (1.8-fold increase, P < 0.0001) and vimentin expression (no change) compared with nonencapsulated controls. Collectively, these results demonstrate that hydrogel biomaterials support the extended culture times required to study chronic pulmonary diseases ex vivo using PCLS technology.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Hidrogeles/administración & dosificación , Pulmón/patología , Técnicas de Cultivo de Órganos/métodos , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/patología
8.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L348-L357, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30489156

RESUMEN

The translation of novel pulmonary fibrosis therapies from preclinical models into the clinic represents a major challenge demonstrated by the high attrition rate of compounds that showed efficacy in preclinical models but demonstrated no significant beneficial effects in clinical trials. A precision-cut lung tissue slice (PCLS) contains all major cell types of the lung and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study pulmonary fibrosis. In this study, using RNA sequencing, we demonstrated that transforming growth factor-ß1 (TGFß1) induced robust fibrotic responses in the rat PCLS model, as it changed the expression of genes functionally related to extracellular matrix remodeling, cell adhesion, epithelial-to-mesenchymal transition, and various immune responses. Nintedanib, pirfenidone, and sorafenib each reversed a subset of genes modulated by TGFß1, and of those genes we identified 229 whose expression was reversed by all three drugs. These genes define a molecular signature characterizing many aspects of pulmonary fibrosis pathology and its attenuation in the rat PCLS fibrosis model. A panel of 12 genes and three secreted biomarkers, including procollagen I, hyaluronic acid, and WNT1-inducible signaling pathway protein 1 were validated as efficacy end points for the evaluation of antifibrotic activity of experimental compounds. Finally, we showed that blockade of αV-integrins suppressed TGFß1-induced fibrotic responses in the rat PCLS fibrosis model. Overall, our results suggest that the TGFß1-induced rat PCLS fibrosis model may represent a valuable system for target validation and to determine the efficacy of experimental compounds.


Asunto(s)
Fibrosis/tratamiento farmacológico , Indoles/farmacología , Pulmón/efectos de los fármacos , Piridonas/farmacología , Animales , Biomarcadores/metabolismo , Colágeno Tipo I/efectos de los fármacos , Colágeno Tipo I/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L105-L113, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407863

RESUMEN

We have previously reported that mice genetically deficient in the actin binding protein gelsolin exhibit impaired airway smooth muscle (ASM) relaxation. Primary cultured ASM cells from these mice demonstrate enhanced inositol triphosphate (IP3) synthesis and increased intracellular calcium in response to Gq-coupled agonists. We hypothesized that this was due to increased intracellular availability of unbound phosphatidylinositol 4,5-bisphosphate (PIP2), based on the fact that gelsolin contains a short peptide region that binds PIP2, presumably making it a less available substrate. We now questioned whether a peptide that corresponds to the PIP2 binding region of gelsolin could modulate ASM signaling and contraction. The 10 amino acid sequence of the gelsolin peptide within the PIP2-binding region was incubated with primary cultures of human ASM cells, and IP3 synthesis was measured in response to a Gq-coupled agonist. Gelsolin peptide-treated cells generated less IP3 under basal and bradykinin or acetylcholine (Gq-coupled) conditions. Acetylcholine-induced contractile force measured in isolated tracheal rings from mice and human tracheal muscle strips in organ baths was attenuated in the presence of the gelsolin peptide. The gelsolin peptide also attenuated methacholine-induced airway constriction in murine precision-cut lung slices. Furthermore, this peptide fragment delivered to the respiratory system of mice via nebulization attenuated subsequent methacholine-induced increases in airway resistance in vivo. The current study demonstrates that introduction of this small gelsolin peptide into the airway may be a novel therapeutic option in bronchoconstrictive diseases.


Asunto(s)
Broncoconstricción/efectos de los fármacos , Gelsolina/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/metabolismo , Péptidos/farmacología , Tráquea/metabolismo , Animales , Gelsolina/química , Humanos , Masculino , Ratones , Músculo Liso/patología , Péptidos/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Tráquea/patología
10.
Xenobiotica ; 49(9): 1106-1115, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30328361

RESUMEN

Epidemiologic studies have demonstrated an association between acetaminophen (APAP) use and the development of asthma symptoms. However, few studies have examined relationships between APAP-induced signaling pathways associated with the development of asthma symptoms. We tested the hypothesis that acute APAP exposure causes airway hyper-responsiveness (AHR) in human airways. Precision cut lung slice (PCLS) airways from humans and mice were used to determine the effects of APAP on airway bronchoconstriction and bronchodilation and to assess APAP metabolism in lungs. APAP did not promote AHR in normal or asthmatic human airways ex vivo. Rather, high concentrations mildly bronchodilated airways pre-constricted with carbachol (CCh), histamine (His), or immunoglobulin E (IgE) cross-linking. Further, the addition of APAP prior to bronchoconstrictors protected the airways from constriction. Similarly, in vivo treatment of mice with APAP (200 mg/kg IP) resulted in reduced bronchoconstrictor responses in PCLS airways ex vivo. Finally, in both mouse and human PCLS airways, exposure to APAP generated only low amounts of APAP-protein adducts, indicating minimal drug metabolic activity in the tissues. These findings indicate that acute exposure to APAP does not initiate AHR, that high-dose APAP is protective against bronchoconstriction, and that APAP is a mild bronchodilator.


Asunto(s)
Acetaminofén/farmacología , Broncoconstricción/efectos de los fármacos , Broncodilatadores/farmacología , Pulmón/efectos de los fármacos , Acetaminofén/administración & dosificación , Acetaminofén/efectos adversos , Albuterol/farmacología , Animales , Asma/fisiopatología , Broncodilatadores/efectos adversos , Carbacol/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Relación Dosis-Respuesta a Droga , Humanos , Pulmón/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos , Persona de Mediana Edad , Técnicas de Cultivo de Órganos , Estrés Oxidativo/efectos de los fármacos , Hipersensibilidad Respiratoria/inducido químicamente
11.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L812-L821, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28336810

RESUMEN

Asthma is a common disorder characterized, in part, by airway smooth muscle (ASM) hyperresponsiveness. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel expressed on airway nerve fibers that modulates afferent signals, resulting in cough, and potentially bronchoconstriction. In the present study, the TRPV1 transcript was detected by RT-PCR in primary cultured human ASM cells, and the TRPV1 protein was detected in ASM of human trachea by immunohistochemistry. Proximity ligation assays suggest that TRPV1 is expressed in the sarcoplasmic reticulum membrane of human ASM cells in close association with sarco/endoplasmic reticulum Ca2+-ATPase-2. In guinea pig tracheal ring organ bath experiments, the TRPV1 agonist capsaicin led to ASM contraction, but this contraction was significantly attenuated by the sodium channel inhibitor bupivacaine (n = 4, P < 0.05) and the neurokinin-2 receptor antagonist GR-159897 (n = 4, P < 0.05), suggesting that this contraction is neutrally mediated. However, pretreatment of guinea pig and human ASM in organ bath experiments with the TRPV1 antagonist capsazepine inhibited the maintenance phase of an acetylcholine-induced contraction (n = 4, P < 0.01 for both species). Similarly, capsazepine inhibited methacholine-induced contraction of peripheral airways in mouse precision-cut lung slice (PCLS) experiments (n = 4-5, P < 0.05). Although capsazepine did not inhibit store-operated calcium entry in mouse ASM cells in PCLS (n = 4-7, P = nonsignificant), it did inhibit calcium oscillations (n = 3, P < 0.001). These studies suggest that TRPV1 is expressed on ASM, including the SR, but that ASM TRPV1 activation does not play a significant role in initiation of ASM contraction. However, capsazepine does inhibit maintenance of contraction, likely by inhibiting calcium oscillations.


Asunto(s)
Calcio/metabolismo , Músculo Liso/metabolismo , Canales Catiónicos TRPV/metabolismo , Tráquea/metabolismo , Acetilcolina/farmacología , Animales , Capsaicina/análogos & derivados , Capsaicina/farmacología , Cobayas , Humanos , Inmunohistoquímica , Cloruro de Metacolina/farmacología , Ratones , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Canales Catiónicos TRPV/genética , Tráquea/efectos de los fármacos
12.
Mol Pharm ; 14(12): 4362-4373, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29099189

RESUMEN

Drug induced phospholipidosis (PLD) may be observed in the preclinical phase of drug development and pose strategic questions. As lysosomes have a central role in pathogenesis of PLD, assessment of lysosomal concentrations is important for understanding the pharmacokinetic basis of PLD manifestation and forecast of potential clinical appearance. Herein we present a systematic approach to provide insight into tissue-specific PLD by evaluation of unbound intracellular and lysosomal (reflecting acidic organelles) concentrations of two structurally related diprotic amines, GRT1 and GRT2. Their intratissue distribution was assessed using brain and lung slice assays. GRT1 induced PLD both in vitro and in vivo. GRT1 showed a high intracellular accumulation that was more pronounced in the lung, but did not cause cerebral PLD due to its effective efflux at the blood-brain barrier. Compared to GRT1, GRT2 revealed higher interstitial fluid concentrations in lung and brain, but more than 30-fold lower lysosomal trapping capacity. No signs of PLD were seen with GRT2. The different profile of GRT2 relative to GRT1 is due to a structural change resulting in a reduced basicity of one amino group. Hence, by distinct chemical modifications, undesired lysosomal trapping can be separated from desired drug delivery into different organs. In summary, assessment of intracellular unbound concentrations was instrumental in delineating the intercompound and intertissue differences in PLD induction in vivo and could be applied for identification of potential lysosomotropic compounds in drug development.


Asunto(s)
Diaminas/farmacología , Lipidosis/inducido químicamente , Modelos Biológicos , Animales , Encéfalo/metabolismo , Química Farmacéutica , Líquido Extracelular/metabolismo , Femenino , Células Hep G2 , Humanos , Pulmón/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Modelos Animales , Modelos Químicos , Fosfolípidos/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Distribución Tisular
13.
Am J Respir Cell Mol Biol ; 55(6): 858-868, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27482635

RESUMEN

Bronchopulmonary dysplasia (BPD) is a chronic disease of extreme prematurity that has serious long-term consequences including increased asthma risk. We earlier identified IL-1 receptor antagonist (IL-1Ra) as a potent inhibitor of murine BPD induced by combining perinatal inflammation (intraperitoneal LPS to pregnant dams) and exposure of pups to hyperoxia (fraction of inspired oxygen = 0.65). In this study, we determined whether airway remodeling and hyperresponsiveness similar to asthma are evident in this model, and whether IL-1Ra is protective. During 28-day exposure to air or hyperoxia, pups received vehicle or 10 mg/kg IL-1Ra by daily subcutaneous injection. Lungs were then prepared for histology and morphometry of alveoli and airways, or for real-time PCR, or inflated with agarose to prepare precision-cut lung slices to visualize ex vivo intrapulmonary airway contraction and relaxation by phase-contrast microscopy. In pups reared under normoxic conditions, IL-1Ra treatment did not affect alveolar or airway structure or airway responses. Pups reared in hyperoxia developed a severe BPD-like lung disease, with fewer, larger alveoli, increased subepithelial collagen, and increased expression of α-smooth muscle actin and cyclin D1. After hyperoxia, methacholine elicited contraction with similar potency but with an increased maximum reduction in lumen area (air, 44%; hyperoxia, 89%), whereas dilator responses to salbutamol were maintained. IL-1Ra treatment prevented hyperoxia-induced alveolar disruption and airway fibrosis but, surprisingly, not the increase in methacholine-induced airway contraction. The current study is the first to demonstrate ex vivo airway hyperreactivity caused by systemic maternal inflammation and postnatal hyperoxia, and it reveals further preclinical mechanistic insights into IL-1Ra as a treatment targeting key pathophysiological features of BPD.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Hiperreactividad Bronquial/complicaciones , Hiperreactividad Bronquial/metabolismo , Displasia Broncopulmonar/complicaciones , Displasia Broncopulmonar/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Albuterol/farmacología , Animales , Hiperreactividad Bronquial/patología , Hiperreactividad Bronquial/fisiopatología , Displasia Broncopulmonar/patología , Displasia Broncopulmonar/fisiopatología , Modelos Animales de Enfermedad , Femenino , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hiperoxia/patología , Hiperoxia/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Ratones Endogámicos C57BL , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Embarazo , Alveolos Pulmonares/patología
14.
Am J Respir Cell Mol Biol ; 53(5): 703-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25874477

RESUMEN

Intracellular Ca(2+) dynamics of airway smooth muscle cells (ASMCs) are believed to play a major role in airway hyperresponsiveness and remodeling in asthma. Prior studies have underscored a prominent role for inositol 1,4,5-triphosphate (IP3) receptors in normal agonist-induced Ca(2+) oscillations, whereas ryanodine receptors (RyRs) appear to remain closed during such Ca(2+) oscillations, which mediate ASMC contraction. Nevertheless, RyRs have been hypothesized to play a role in hyperresponsive Ca(2+) signaling. This could be explained by RyRs being "sensitized" to open more frequently by certain compounds. We investigate the implications of RyR sensitization on Ca(2+) dynamics in ASMC using a combination of mathematical modeling and experiments with mouse precision-cut lung slices. Caffeine is used to increase the sensitivity of RyRs to cytosolic Ca(2+) concentration ([Ca(2+)]i) and sarcoplasmic reticulum Ca(2+) ([Ca(2+)]SR). In ASMCs, high caffeine concentrations (>10 mM) induce a sustained elevation of [Ca(2+)]i. Our mathematical model accounts for this by the activation of store-operated Ca(2+) entry that results from a large increase in the RyR sensitivity to [Ca(2+)]SR and the associated Ca(2+) release, which leads to a reduction of [Ca(2+)]SR. Importantly, our model also predicts that: (1) moderate RyR sensitization induces slow Ca(2+) oscillations, a result experimentally confirmed with low concentrations of caffeine; and (2) high RyR sensitization suppresses fast, agonist-induced Ca(2+) oscillations by inducing substantial store-operated Ca(2+) entry and elevated [Ca(2+)]i. These results suggest that RyR sensitization could play a role in ASMC proliferation (by inducing slow Ca(2+) oscillations) and in airway hyperresponsiveness (by inducing greater mean [Ca(2+)]i for similar levels of contractile agonist).


Asunto(s)
Cafeína/farmacología , Factores Inmunológicos/farmacología , Miocitos del Músculo Liso/inmunología , Hipersensibilidad Respiratoria/inmunología , Canal Liberador de Calcio Receptor de Rianodina/inmunología , Animales , Calcio/inmunología , Calcio/metabolismo , Señalización del Calcio , Proliferación Celular/efectos de los fármacos , Simulación por Computador , Femenino , Regulación de la Expresión Génica , Inmunización , Inositol 1,4,5-Trifosfato/inmunología , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/inmunología , Activación del Canal Iónico/efectos de los fármacos , Cinética , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Microtomía , Modelos Estadísticos , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Hipersensibilidad Respiratoria/inducido químicamente , Hipersensibilidad Respiratoria/genética , Hipersensibilidad Respiratoria/patología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/patología , Canal Liberador de Calcio Receptor de Rianodina/genética , Técnicas de Cultivo de Tejidos
15.
Am J Physiol Lung Cell Mol Physiol ; 309(10): L1219-28, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26386117

RESUMEN

Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor-γ (PPARγ) ligand, is a novel dilator of small airways in mouse precision cut lung slices (PCLS). In this study, relaxation to RGZ and ß-adrenoceptor agonists were compared in trachea from naïve mice and guinea pigs and trachea and PCLS from a mouse model of chronic allergic airways disease (AAD). Airways were precontracted with methacholine before addition of PPARγ ligands [RGZ, ciglitazone (CGZ), or 15-deoxy-(Δ12,14)-prostaglandin J2 (15-deoxy-PGJ2)] or ß-adrenoceptor agonists (isoprenaline and salbutamol). The effects of T0070907 and GW9662 (PPARγ antagonists) or epithelial removal on relaxation were assessed. Changes in force of trachea and lumen area in PCLS were measured using preparations from saline-challenged mice and mice sensitized (days 0 and 14) and challenged with ovalbumin (3 times/wk, 6 wk). RGZ and CGZ elicited complete relaxation with greater efficacy than ß-adrenoceptor agonists in mouse airways but not guinea pig trachea, while 15-deoxy-PGJ2 did not mediate bronchodilation. Relaxation to RGZ was not prevented by T0070907 or GW9662 or by epithelial removal. RGZ-induced relaxation was preserved in the trachea and increased in PCLS after ovalbumin-challenge. Although RGZ was less potent than ß-adrenoceptor agonists, its effects were additive with salbutamol and isoprenaline and only RGZ maintained potency and full efficacy in maximally contracted airways or after allergen challenge. Acute PPARγ-independent, epithelial-independent airway relaxation to RGZ is resistant to functional antagonism and maintained in both trachea and PCLS from a model of chronic AAD. These novel efficacious actions of RGZ support its therapeutic potential in asthma when responsiveness to ß-adrenoceptor agonists is limited.


Asunto(s)
Antiasmáticos/farmacología , Asma/tratamiento farmacológico , Tiazolidinedionas/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Asma/fisiopatología , Evaluación Preclínica de Medicamentos , Femenino , Cobayas , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Cloruro de Metacolina/farmacología , Ratones Endogámicos BALB C , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiopatología , Rosiglitazona , Tráquea/efectos de los fármacos , Tráquea/fisiopatología
16.
FASEB J ; 28(2): 897-907, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24221086

RESUMEN

Children who are exposed to environmental respiratory insults often develop asthma that persists into adulthood. In this study, we used a neonatal mouse model of ovalbumin (OVA)-induced allergic airway inflammation to understand the long-term effects of early childhood insults on airway structure and function. We showed that OVA sensitization and challenge in early life led to a 2-fold increase in airway smooth muscle (ASM) innervation (P<0.05) and persistent airway hyperreactivity (AHR). In contrast, OVA exposure in adult life elicited short-term AHR without affecting innervation levels. We found that postnatal ASM innervation required neurotrophin (NT)-4 signaling through the TrkB receptor and that early-life OVA exposure significantly elevated NT4 levels and TrkB signaling by 5- and 2-fold, respectively, to increase innervation. Notably, blockade of NT4/TrkB signaling in OVA-exposed pups prevented both acute and persistent AHR without affecting baseline airway function or inflammation. Furthermore, biophysical assays using lung slices and isolated cells demonstrated that NT4 was necessary for hyperreactivity of ASM induced by early-life OVA exposure. Together, our findings show that the NT4/TrkB-dependent increase in innervation plays a critical role in the alteration of the ASM phenotype during postnatal growth, thereby linking early-life allergen exposure to persistent airway dysfunction.


Asunto(s)
Músculo Liso/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Receptor trkB/metabolismo , Alérgenos/inmunología , Animales , Asma , Western Blotting , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Ratones , Microscopía Confocal , Músculo Liso/efectos de los fármacos , Factores de Crecimiento Nervioso/genética , Ovalbúmina/inmunología , Receptor trkB/genética
17.
Korean J Physiol Pharmacol ; 19(1): 65-71, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25605999

RESUMEN

Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR) and reversible airway obstruction. Methacholine (MCh) is widely used in broncho-provocation test to evaluate airway resistance. For experimental investigation, ovalbumin-induced sensitization is frequently used in rodents (Ova-asthma). However, albeit the inflammatory histology and AHR in vivo, it remains unclear whether the MCh sensitivity of airway smooth muscle isolated from Ova-asthma is persistently changed. In this study, the contractions of airways in precision-cut lung slices (PCLS) from control, Ova-asthma, and IL-13 overexpressed transgenic mice (IL-13TG) were compared by analyzing the airway lumen space (AW). The airway resistance in vivo was measured using plethysmograph. AHR and increased inflammatory cells in BAL fluid were confirmed in Ova-asthma and IL-13TG mice. In the PCLS from all three groups, MCh concentration-dependent narrowing of airway lumen (ΔAW) was observed. In contrast to the AHR in vivo, the EC50 of MCh for ΔAW from Ova-asthma and IL-13TG were not different from control, indicating unchanged sensitivity to MCh. Although the AW recovery upon MCh-washout showed sluggish tendency in Ova-asthma, the change was also statistically insignificant. Membrane depolarization-induced ΔAW by 60 mM K(+) (60K-contraction) was larger in IL-13TG than control, whereas 60K-contraction of Ova-asthma was unaffected. Furthermore, serotonin-induced ΔAW of Ova-asthma was smaller than control and IL-13TG. Taken together, the AHR in Ova-asthma and IL-13TG are not reflected in the contractility of isolated airways from PCLS. The AHR of the model animals seems to require intrinsic agonists or inflammatory microenvironment that is washable during tissue preparation.

18.
Am J Physiol Lung Cell Mol Physiol ; 306(6): L476-86, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24441871

RESUMEN

KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 µM). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 µM; 22 ± 7%) and 2,5-dimethylcelecoxib (10 µM; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting ß2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 µM) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a ß2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Bronquios/efectos de los fármacos , Broncoconstricción/efectos de los fármacos , Broncodilatadores/farmacología , Canales de Potasio KCNQ/agonistas , Acetilcolina/metabolismo , Animales , Antracenos/farmacología , Asma/tratamiento farmacológico , Asma/metabolismo , Broncoconstrictores/farmacología , Carbamatos/farmacología , Etanolaminas/farmacología , Fumarato de Formoterol , Queratolíticos/farmacología , Masculino , Moduladores del Transporte de Membrana/farmacología , Cloruro de Metacolina/farmacología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Compuestos Organometálicos/farmacología , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Pirazoles/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Sulfonamidas/farmacología
19.
Eur J Med Res ; 28(1): 143, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36998092

RESUMEN

BACKGROUND: In recent years, there have been breakthroughs in the preclinical research of respiratory diseases, such as organoids and organ tissue chip models, but they still cannot provide insight into human respiratory diseases well. Human lung slices model provides a promising in vitro model for the study of respiratory diseases because of its preservation of lung structure and major cell types. METHODS: Human lung slices were manually prepared from small pieces of lung tissues obtained from lung cancer patients subjected to lung surgery. To evaluate the suitability of this model for lung fibrosis research, lung slices were treated with CdCl2 (30 µM), TGF-ß1 (1 ng/ml) or CdCl2 plus TGF-ß1 for 3 days followed by toxicity assessment, gene expression analysis and histopathological observations. RESULTS: CdCl2 treatment resulted in a concentration-dependent toxicity profile evidenced by MTT assay as well as histopathological observations. In comparison with the untreated group, CdCl2 and TGF-ß1 significantly induces MMP2 and MMP9 gene expression but not MMP1. Interestingly, CdCl2 plus TGF-ß1 significantly induces the expression of MMP1 but not MMP2, MMP7 or MMP9. Microscopic observations reveal the pathogenesis of interstitial lung fibrosis in the lung slices of all groups; however, CdCl2 plus TGF-ß1 treatment leads to a greater alveolar septa thickness and the formation of fibroblast foci-like pathological features. The lung slice model is in short of blood supply and the inflammatory/immune-responses are considered minimal. CONCLUSIONS: The results are in favor of the hypothesis that idiopathic pulmonary fibrosis (IPF) is mediated by tissue damage and abnormal repair. Induction of MMP1 gene expression and fibroblast foci-like pathogenesis suggest that this model might represent an early stage of IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factor de Crecimiento Transformador beta1 , Humanos , Factor de Crecimiento Transformador beta1/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Pulmón/patología , Fibroblastos/metabolismo
20.
Front Immunol ; 14: 1241323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649477

RESUMEN

Introduction: Inflammatory lesions after Influenza A viruses (IAV) are potential therapeutic target for which better understanding of post-infection immune mechanisms is required. Most studies to evaluate innate immune reactions induced by IAV are based on quantitative/functional methods and anatomical exploration is most often non-existent. We aimed to study pulmonary damage and macrophage recruitment using two-photon excitation microscopy (TPEM) after IAV infection. Methods: We infected C57BL/6 CD11c+YFP mice with A/Puerto Ricco/8/34 H1N1. We performed immune cell analysis, including flow cytometry, cytokine concentration assays, and TPEM observations after staining with anti-F4/80 antibody coupled to BV421. We adapted live lung slice (LLS) method for ex-vivo intravital microscopy to analyze cell motility. Results: TPEM provided complementary data to flow cytometry and cytokine assays by allowing observation of bronchial epithelium lesions and spreading of local infection. Addition of F4/80-BV421 staining allowed us to precisely determine timing of recruitment and pulmonary migration of macrophages. Ex-vivo LLS preserved cellular viability, allowing us to observe acceleration of macrophage motility. Conclusion: After IAV infection, we were able to explore structural consequences and successive waves of innate immune cell recruitment. By combining microscopy, flow cytometry and chemokine measurements, we describe novel and precise scenario of innate immune response against IAV.


Asunto(s)
Alphainfluenzavirus , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inmunidad Innata , Microscopía Fluorescente , Citocinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA