Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2314561121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359295

RESUMEN

Coordinated metabolic reprogramming and epigenetic remodeling are critical for modulating T cell function and differentiation. However, how the epigenetic modification controls Th17/Treg cell balance via metabolic reprogramming remains obscure. Here, we find that Setd2, a histone H3K36 trimethyltransferase, suppresses Th17 development but promotes iTreg cell polarization via phospholipid remodeling. Mechanistically, Setd2 up-regulates transcriptional expression of lysophosphatidylcholine acyltransferase 4 (Lpcat4) via directly catalyzing H3K36me3 of Lpcat4 gene promoter in T cells. Lpcat4-mediated phosphatidylcholine PC(16:0,18:2) generation in turn limits endoplasmic reticulum stress and oxidative stress. These changes decrease HIF-1α transcriptional activity and thus suppress Th17 but enhance Treg development. Consistent with this regulatory paradigm, T cell deficiency of Setd2 aggravates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis due to imbalanced Th17/Treg cell differentiation. Overall, our data reveal that Setd2 acts as an epigenetic brake for T cell-mediated autoimmunity through phospholipid remodeling, suggesting potential targets for treating neuroinflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes , Fosfolípidos , Humanos , Histonas/genética , Histonas/metabolismo , Diferenciación Celular , Linfocitos T/metabolismo
2.
FASEB J ; 38(1): e23328, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019192

RESUMEN

Acetaminophen (APAP) is a double-edged sword, mainly depending on the dosage. A moderate dose of APAP is effective for fever and pain relief; however, an overdose induces acute liver injury. The mechanism underlying APAP-induced acute liver failure is unclear, and its treatment is limited. A recent report has shown that several oxidized phospholipids are associated with APAP-induced acute liver failure. Lysophosphatidylcholine acyltransferase 3 (Lpcat3, Lplat12), which is highly expressed in the liver, preferentially catalyzes the incorporation of arachidonate into lysophospholipids (PLs). In the present study, we investigated the roles of Lpcat3 on APAP-induced acute liver injury using liver-specific Lpcat3-knockout mice. Hepatic Lpcat3 deficiency reduced the degree of APAP-induced necrosis of hepatocytes around Zone 3 and ameliorated the elevation of hepatic injury serum marker levels, and prolonged survival. Lipidomic analysis showed that the accumulation of oxidized and hydroperoxidized phospholipids was suppressed in Lpcat3-knockout mice. The amelioration of APAP-induced acute liver injury was due not only to the reduction in the lipid synthesis of arachidonic acid PLs because of Lpcat3 deficiency, but also to the promotion of the APAP detoxification pathway by facilitating the conjugation of glutathione and N-acetyl-p-benzoquinone imine. Our findings suggest that Lpcat3 is a potential therapeutic target for treating APAP-induced acute liver injury.


Asunto(s)
Acetaminofén , Fallo Hepático Agudo , Animales , Ratones , Acetaminofén/toxicidad , Hepatocitos , Ratones Noqueados , 1-Acilglicerofosfocolina O-Aciltransferasa
3.
Cereb Cortex ; 33(5): 1955-1971, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-35584785

RESUMEN

Sevoflurane exposure in the neonatal period causes long-term developmental neuropsychological dysfunction, including memory impairment and anxiety-like behaviors. However, the molecular mechanisms underlying such effects have not been fully elucidated. In this study, we investigated the effect of neonatal exposure to sevoflurane on neurobehavioral profiles in adolescent rats, and applied an integrated approach of lipidomics and proteomics to investigate the molecular network implicated in neurobehavioral dysfunction. We found that neonatal exposure to sevoflurane caused cognitive impairment and social behavior deficits in adolescent rats. Lipidomics analyses revealed that sevoflurane significantly remodeled hippocampal lipid metabolism, including lysophatidylcholine (LPC) metabolism, phospholipid carbon chain length and carbon chain saturation. Through a combined proteomics analysis, we found that neonatal exposure to sevoflurane significantly downregulated the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1), a key enzyme in the regulation of phospholipid metabolism, in the hippocampus of adolescent rats. Importantly, hippocampal LPCAT1 overexpression restored the dysregulated glycerophospholipid (GP) metabolism and alleviated the learning and memory deficits caused by sevoflurane. Collectively, our evidence that neonatal exposure to sevoflurane downregulates LPCAT1 expression and dysregulates GP metabolism in the hippocampus, which may contribute to the neurobehavioral dysfunction in the adolescent rats.


Asunto(s)
Anestésicos por Inhalación , Animales , Ratas , Sevoflurano/metabolismo , Sevoflurano/farmacología , Animales Recién Nacidos , Anestésicos por Inhalación/farmacología , Ratas Sprague-Dawley , Aprendizaje por Laberinto , Trastornos de la Memoria/metabolismo , Hipocampo/metabolismo , Fosfolípidos/metabolismo
4.
Annu Rev Physiol ; 81: 165-188, 2019 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-30379616

RESUMEN

Phospholipids are major constituents of biological membranes. The fatty acyl chain composition of phospholipids determines the biophysical properties of membranes and thereby affects their impact on biological processes. The composition of fatty acyl chains is also actively regulated through a deacylation and reacylation pathway called Lands' cycle. Recent studies of mouse genetic models have demonstrated that lysophosphatidylcholine acyltransferases (LPCATs), which catalyze the incorporation of fatty acyl chains into the sn-2 site of phosphatidylcholine, play important roles in pathophysiology. Two LPCAT family members, LPCAT1 and LPCAT3, have been particularly well studied. LPCAT1 is crucial for proper lung function due to its role in pulmonary surfactant biosynthesis. LPCAT3 maintains systemic lipid homeostasis by regulating lipid absorption in intestine, lipoprotein secretion, and de novo lipogenesis in liver. Mounting evidence also suggests that changes in LPCAT activity may be potentially involved in pathological conditions, including nonalcoholic fatty liver disease, atherosclerosis, viral infections, and cancer. Pharmacological manipulation of LPCAT activity and membrane phospholipid composition may provide new therapeutic options for these conditions.


Asunto(s)
Fosfolípidos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Enfermedad , Homeostasis/fisiología , Humanos , Hígado/metabolismo , Transducción de Señal/fisiología
5.
Angew Chem Int Ed Engl ; 62(6): e202215556, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36478519

RESUMEN

Lysophosphatidylcholine acyltransferase-1 (LPCAT1) plays a critical role in the remodeling of phosphatidylcholines (PCs) in cellular lipidome. However, evidence is scarce regarding its sn-selectivity, viz. the preference of assembling acyl-Coenzyme A (CoA) at the C1 or C2-hydroxyl on a glycerol backbone because of difficulty to quantify the thus-formed PC sn-isomers. We have established a multiplexed assay to measure both sn- and acyl-chain selectivity of LPCAT1 toward a mixture of acyl-CoAs by integrating isomer-resolving tandem mass spectrometry. Our findings reveal that LPCAT1 shows exclusive sn-1 specificity regardless of the identity of acyl-CoAs. We further confirm that elevated PC 18 : 1/16:0 relative to its sn-isomer results from an increased expression of LPCAT1 in human hepatocellular carcinoma (HCC) tissue as compared to normal liver tissue. MS imaging via desorption electrospray ionization of PC 18 : 1/16:0 thus enables visualization of HCC margins in human liver tissue at a molecular level.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Acilcoenzima A/metabolismo , Aciltransferasas/metabolismo , Fosfatidilcolinas/metabolismo , Especificidad por Sustrato , Espectrometría de Masas en Tándem
6.
Fish Shellfish Immunol ; 126: 12-20, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35526799

RESUMEN

LPCAT3, a subtype of lysophosphatidylcholine acyltransferases, is a key enzyme in phosphatidylcholine remodeling pathway and plays a significant role in mediating inflammatory response in mammals. However, its inflammatory function in fish has yet to be discovered. Herein, this study aimed to investigate its role in inflammation in Larimichthys crocea. We analyzed the coding sequence of Larimichthys crocea LPCAT3 (Lc-LPCAT3) and explored the effect of Lc-LPCAT3 on palmitate (PA)-induced inflammation. We found that in macrophage cell line of Larimichthys crocea, the mRNA expression of Lc-lpcat3 was upregulated by PA with the elevated pro-inflammatory genes expression, including il1ß, il6, il8, tnfα and ifnγ. Next, the role of Lc-LPCAT3 in inflammation induced by PA was further investigated. Results showed that knockdown of Lc-LPCAT3 mitigated PA-induced pro-inflammatory genes mRNA expression, including il1ß, il8, tnfα and ifnγ, in which JNK signaling pathway was involved. In contrast, overexpression of Lc-LPCAT3 induced pro-inflammatory genes expression including il1ß, tnfα and ifnγ. Furthermore, several transcription factors with negative regulation of Lc-LPCAT3 promoter activity were discovered including LXRα, RXRα, PPARα, PPARγ, CEBPα, CEBPß, CEBPδ, SREBP1 and SREBP2, and SREBP1 had the strongest regulatory effect. In conclusion, we first discovered that fish LPCAT3 participated in PA-induced inflammation, and targeting SREBP1 might be an effective coping strategy.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Perciformes , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/veterinaria , Interleucina-8 , Macrófagos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Palmitatos/metabolismo , Perciformes/genética , Perciformes/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 117-130, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36331295

RESUMEN

Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation.


Asunto(s)
Adipocitos , Ácido Palmítico , Animales , Ratones , Ácido Palmítico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Inflamación/metabolismo , Mamíferos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo
8.
J Lipid Res ; 62: 100013, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518513

RESUMEN

Recent studies have highlighted an important role for lysophosphatidylcholine acyltransferase 3 (LPCAT3) in controlling the PUFA composition of cell membranes in the liver and intestine. In these organs, LPCAT3 critically supports cell-membrane-associated processes such as lipid absorption or lipoprotein secretion. However, the role of LPCAT3 in macrophages remains controversial. Here, we investigated LPCAT3's role in macrophages both in vitro and in vivo in mice with atherosclerosis and obesity. To accomplish this, we used the LysMCre strategy to develop a mouse model with conditional Lpcat3 deficiency in myeloid cells (Lpcat3KOMac). We observed that partial Lpcat3 deficiency (approximately 75% reduction) in macrophages alters the PUFA composition of all phospholipid (PL) subclasses, including phosphatidylinositols and phosphatidylserines. A reduced incorporation of C20 PUFAs (mainly arachidonic acid [AA]) into PLs was associated with a redistribution of these FAs toward other cellular lipids such as cholesteryl esters. Lpcat3 deficiency had no obvious impact on macrophage inflammatory response or endoplasmic reticulum (ER) stress; however, Lpcat3KOMac macrophages exhibited a reduction in cholesterol efflux in vitro. In vivo, myeloid Lpcat3 deficiency did not affect atherosclerosis development in LDL receptor deficient mouse (Ldlr-/-) mice. Lpcat3KOMac mice on a high-fat diet displayed a mild increase in hepatic steatosis associated with alterations in several liver metabolic pathways and in liver eicosanoid composition. We conclude that alterations in AA metabolism along with myeloid Lpcat3 deficiency may secondarily affect AA homeostasis in the whole liver, leading to metabolic disorders and triglyceride accumulation.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa
9.
Cancer Cell Int ; 21(1): 442, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34419067

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) remains one of the most common malignant neoplasms. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a key role in the lipid remodelling and is correlated with various neoplasms. Nonetheless, the biological functions and molecular mechanisms of LPCAT1 underlying HCC remain obscure. METHODS: In the present study, we investigated the role of LPCAT1 in the progression of HCC. In-house RT-qPCR, tissue microarrays, and immunohistochemistry were performed to detect the expression levels and the clinical value of LPCAT1 in HCC. External datasets were downloaded to confirm the results. Proliferation, migration, invasiveness, cell cycle, and apoptosis assays were conducted to reveal the biological effects LPCAT1 has on SMMC-7721 and Huh7 cells. HCC differentially expressed genes and LPCAT1 co-expressed genes were identified to explore the molecular mechanisms underlying HCC progression. RESULTS: LPCAT1 showed upregulated expression in 3715 HCC specimens as opposed to 3105 non-tumour specimens. Additionally, LPCAT1 might be an independent prognostic factor for HCC. LPCAT1-knockout hampered cellular proliferation, migration, and metastasis in SMMC-7721 and Huh7 cells. More importantly, the cell cycle and chemical carcinogenesis were the two most enriched signalling pathways. CONCLUSIONS: The present study demonstrated that increased LPCAT1 correlated with poor prognosis in HCC patients and fuelled HCC progression by promoting cellular growth, migration, and metastasis.

10.
Nanomedicine ; 36: 102418, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34171470

RESUMEN

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa , Silenciador del Gen , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferasa/antagonistas & inhibidores , 1-Acilglicerofosfocolina O-Aciltransferasa/biosíntesis , Línea Celular Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/biosíntesis , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacología
11.
J Biol Chem ; 293(47): 18328-18336, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30305392

RESUMEN

2-Hydroxy-oleic acid (2OHOA) is a potent anticancer drug that induces cancer cell cycle arrest and apoptosis. Previous studies have suggested that 2OHOA's anticancer effect is mediated by SMS activation in cancer cells, including A549 and U118 cells. To confirm this phenomenon, in this study, we treated both A549 and U118 cells with 2OHOA and measured SMS activity. To our surprise, we found neither 2OHOA-mediated SMS activation nor sphingomyelin accumulation in the cells. However, we noted that 2OHOA significantly reduces phosphatidylcholine in these cells. We also did not observe 2OHOA-mediated SMS activation in mouse tissue homogenates. Importantly, 2OHOA inhibited rather than activated recombinant SMS1 (rSMS1) and rSMS2 in a dose-dependent fashion. Intra-gastric treatment of C57BL/6J mice with 2OHOA for 10 days had no effects on liver and small intestine SMS activities and plasma sphingomyelin levels. The treatment inhibited lysophosphatidylcholine acyltransferase (LPCAT) activity, consistent with the aforementioned reduction in plasma phosphatidylcholine. Because total cellular phosphatidylcholine is used as a predictive biomarker for monitoring tumor responses, the previously reported 2OHOA-mediated cancer suppression could be related to this phosphatidylcholine reduction, which may influence cell membrane structure and properties. We conclude that 2OHOA is not a SMS activator and that its anticancer property may be related to an effect on phosphatidylcholine metabolism.


Asunto(s)
Antineoplásicos/metabolismo , Neoplasias/enzimología , Ácidos Oléicos/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Activación Enzimática , Activadores de Enzimas/administración & dosificación , Activadores de Enzimas/química , Activadores de Enzimas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/química , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
12.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845751

RESUMEN

Lysophosphatidylcholine (LPC) is increasingly recognized as a key marker/factor positively associated with cardiovascular and neurodegenerative diseases. However, findings from recent clinical lipidomic studies of LPC have been controversial. A key issue is the complexity of the enzymatic cascade involved in LPC metabolism. Here, we address the coordination of these enzymes and the derangement that may disrupt LPC homeostasis, leading to metabolic disorders. LPC is mainly derived from the turnover of phosphatidylcholine (PC) in the circulation by phospholipase A2 (PLA2). In the presence of Acyl-CoA, lysophosphatidylcholine acyltransferase (LPCAT) converts LPC to PC, which rapidly gets recycled by the Lands cycle. However, overexpression or enhanced activity of PLA2 increases the LPC content in modified low-density lipoprotein (LDL) and oxidized LDL, which play significant roles in the development of atherosclerotic plaques and endothelial dysfunction. The intracellular enzyme LPCAT cannot directly remove LPC from circulation. Hydrolysis of LPC by autotaxin, an enzyme with lysophospholipase D activity, generates lysophosphatidic acid, which is highly associated with cancers. Although enzymes with lysophospholipase A1 activity could theoretically degrade LPC into harmless metabolites, they have not been found in the circulation. In conclusion, understanding enzyme kinetics and LPC metabolism may help identify novel therapeutic targets in LPC-associated diseases.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Lisofosfatidilcolinas/metabolismo , Enfermedades Metabólicas/metabolismo , Fosfolipasas A2/metabolismo , Homeostasis , Humanos , Hidrólisis , Lipoproteínas LDL/metabolismo , Enfermedades Metabólicas/enzimología , Fosfatidilcolinas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(8): 834-843, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29673706

RESUMEN

Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the ß-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/ß-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/ß-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/deficiencia , Adipocitos/fisiología , Adipogénesis/fisiología , Vía de Señalización Wnt/fisiología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células 3T3-L1 , Acilación/fisiología , Animales , Membrana Celular/metabolismo , Ácidos Grasos Insaturados/metabolismo , Técnicas de Silenciamiento del Gen , Lipogénesis/fisiología , Ratones , Fosfatidilcolinas/metabolismo , ARN Interferente Pequeño/metabolismo
14.
FASEB J ; 31(7): 2973-2980, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28341636

RESUMEN

Neuropathic pain resulting from peripheral neuronal damage is largely resistant to treatment with currently available analgesic drugs. Recently, ATP, lysophosphatidic acid, and platelet-activating factor (PAF) have been reported to play important inductive roles in neuropathic pain. In the present study, we found that pain-like behaviors resulting from partial sciatic nerve ligation (PSL) were largely attenuated by deficiency of lysophosphatidylcholine acyltransferase (LPCAT)2, which is one of the PAF biosynthetic enzymes. By contrast, deficiency of the other PAF biosynthetic enzyme, LPCAT1, did not ameliorate neuropathic pain. With regard to the mechanism of the observed effects, LPCAT2 was detected in wild-type spinal cord microglia, and the absence of LPCAT2 expression precluded spinal PAF expression in LPCAT2-knockout mice. Furthermore, ATP-stimulated PAF biosynthesis in macrophages was decreased by pretreatment with the PAF receptor antagonist ABT-491, indicating the existence of a positive feedback loop of PAF biosynthesis, which we designated the PAF-pain loop. In conclusion, LPCAT2 is a novel therapeutic target for newly categorized analgesic drugs; in addition, our data call for the re-evaluation of the clinical utility of PAF receptor antagonists.-Shindou, H., Shiraishi, S., Tokuoka, S. M., Takahashi Y., Harayama, T., Abe, T., Bando, K., Miyano, K., Kita, Y., Uezono, Y., Shimizu, T. Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Neuralgia/tratamiento farmacológico , Factor de Activación Plaquetaria/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Animales , Regulación de la Expresión Génica/fisiología , Hiperalgesia , Ratones , Ratones Noqueados , Microglía , Factor de Activación Plaquetaria/genética , Asta Dorsal de la Médula Espinal/metabolismo
15.
J Biol Chem ; 291(3): 1115-22, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26511317

RESUMEN

Diabetes is characterized by increased lipogenesis as well as increased endoplasmic reticulum (ER) stress and inflammation. The nuclear hormone receptor liver X receptor (LXR) is induced by insulin and is a key regulator of lipid metabolism. It promotes lipogenesis and cholesterol efflux, but suppresses endoplasmic reticulum stress and inflammation. The goal of these studies was to dissect the effects of insulin on LXR action. We used antisense oligonucleotides to knock down Lxrα in mice with hepatocyte-specific deletion of the insulin receptor and their controls. We found, surprisingly, that knock-out of the insulin receptor and knockdown of Lxrα produced equivalent, non-additive effects on the lipogenic genes. Thus, insulin was unable to induce the lipogenic genes in the absence of Lxrα, and LXRα was unable to induce the lipogenic genes in the absence of insulin. However, insulin was not required for LXRα to modulate the phospholipid profile, or to suppress genes in the ER stress or inflammation pathways. These data show that insulin is required specifically for the lipogenic effects of LXRα and that manipulation of the insulin signaling pathway could dissociate the beneficial effects of LXR on cholesterol efflux, inflammation, and ER stress from the negative effects on lipogenesis.


Asunto(s)
Estrés del Retículo Endoplásmico , Regulación de la Expresión Génica , Hepatitis/metabolismo , Insulina/metabolismo , Lipogénesis , Hígado/metabolismo , Receptores Nucleares Huérfanos/agonistas , Animales , Cruzamientos Genéticos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hepatitis/complicaciones , Hepatitis/enzimología , Hepatitis/inmunología , Resistencia a la Insulina , Hígado/enzimología , Hígado/inmunología , Receptores X del Hígado , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Fosfolípidos/metabolismo , Receptor de Insulina/agonistas , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transducción de Señal
16.
J Vasc Res ; 54(4): 200-208, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28683445

RESUMEN

Free arachidonic acid (AA) is an important precursor of lipid mediators such as leukotrienes and prostaglandins that induces inflammation and is associated with atherosclerosis progression. Recent studies have shown that lysophosphatidylcholine acyltransferase-3 (LPCAT3) converts lysophosphatidylcholine (LPC) and free AA into phosphatidylcholine (PC)-containing AA (arachidonyl-PC) and thereby can regulate intracellular free-AA levels. However, the association between LPCAT3 and atherosclerosis remains to be established. In this study, we analyzed human and mouse atherosclerotic tissues to gain insight into the arachidonyl-PC metabolism involving LPCAT3 using imaging mass spectrometry. The data revealed a complementary distribution of arachidonyl-PC and LPC in human atherosclerotic tissues with arachidonyl-PC decreasing and LPC increasing as atherosclerosis progressed. Furthermore, we found a homologous distribution of LPCAT3 expression and arachidonyl-PC based on atherosclerotic progression. In contrast, in ApoE-deficient mice, atherosclerosis increased both arachidonyl-PC accumulation and LPCAT3 expression. Taken together, these findings suggest that the regulation of LPCAT3 expression might be associated with atherosclerotic progression in humans.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Aterosclerosis/enzimología , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Anciano , Anciano de 80 o más Años , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Ácido Araquidónico/metabolismo , Arterias/enzimología , Arterias/patología , Aterosclerosis/genética , Aterosclerosis/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Lisofosfatidilcolinas/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Persona de Mediana Edad , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Fosfatidilcolinas/metabolismo , Placa Aterosclerótica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Regulación hacia Arriba
17.
J Cell Biochem ; 116(12): 2840-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25994902

RESUMEN

Lysophospholipid acyltransferases (LPLATs) regulate the diversification of fatty acid composition in biological membranes. Lysophosphatidylcholine acyltransferases (LPCATs) are members of the LPLATs that play a role in inflammatory responses. M1 macrophages differentiate in response to lipopolysaccharide (LPS) and are pro-inflammatory, whereas M2 macrophages, which differentiate in response to interleukin-4 (IL-4), are anti-inflammatory and involved in homeostasis and wound healing. In the present study, we showed that LPCATs play an important role in M1/M2-macrophage polarization. LPS changed the shape of PMA-treated U937 cells from rounded to spindle shaped and upregulated the mRNA and protein expression of the M1 macrophage markers CXCL10, TNF-α, and IL-1ß. IL-4 had no effect on the shape of PMA-treated U937 cells and upregulated the M2 macrophage markers CD206, IL-1ra, and TGF-ß in PMA-treated U937 cells. These results suggest that LPS and IL-4 promote the differentiation of PMA-treated U937 cells into M1- and M2-polarized macrophages, respectively. LPS significantly downregulated the mRNA expression of LPCAT3, one of four LPCAT isoforms, and suppressed its enzymatic activity toward linoleoyl-CoA and arachidonoyl-CoA in PMA-treated U937 cells. LPCAT3 knockdown induced a spindle-shaped morphology typical of M1-polarized macrophages, and increased the secretion of CXCL10 and decreased the levels of CD206 in IL-4-activated U937 cells. This indicates that knockdown of LPCAT3 shifts the differentiation of PMA-treated U937 cells to M1-polarized macrophages. Our findings suggest that LPCAT3 plays an important role in M1/M2-macrophage polarization, providing novel potential therapeutic targets for the regulation of immune and inflammatory disorders.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Polaridad Celular/genética , Inflamación/genética , Macrófagos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Diferenciación Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Interleucina-4/biosíntesis , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Ácidos Polimetacrílicos/farmacología , ARN Mensajero/biosíntesis , Células U937
18.
Biochim Biophys Acta ; 1832(12): 2019-26, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23851051

RESUMEN

Cholestasis is one of the major causes of liver diseases. A chronic accumulation of toxic bile acids in the liver, which occurs in this condition, can induce fibrosis and cirrhosis. Inflammation is a fundamental component of acute and chronic cholestatic liver injury. Platelet-activating factor (PAF) is a proinflammatory lipid which may be generated by two independent pathways called the de novo and remodeling pathway being the last responsible for the synthesis of PAF during inflammation. In recent years a key role in PAF remodeling has been attributed to lysophosphatidylcholine acyltransferase (LPCAT) enzymes. Although the knowledge on their characteristic is growing, the exact mechanism of LPCAT in pathological conditions remains still unknown. Here, we reported that the level of lyso-PAF and PAF significantly increased in the liver of cirrhotic vs. control rats together with a significant decrease in both mRNA abundance and protein level of both LPCAT1 and LPCAT2. Acyltransferase activities of both LPCAT1 and LPCAT2 were parallel decreased in the liver of cirrhotic animals. Interestingly, treatment with silybin strongly decreased the level of both pro-inflammatory lipids and restored the activity and expression of both LPCAT1 and LPCAT2 of cirrhotic liver. Silybin effect was specific for LPCAT1 and LPCAT2 since it did not affect LPCAT3 mRNA abundance of cirrhotic liver.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/antagonistas & inhibidores , Cromatografía en Capa Delgada , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/prevención & control , Cirrosis Hepática/complicaciones , Factor de Activación Plaquetaria/metabolismo , Silimarina/farmacología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Antioxidantes/farmacología , Western Blotting , Regulación hacia Abajo , Inflamación/etiología , Inflamación/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Fosfolipasas A2/metabolismo , Factor de Activación Plaquetaria/genética , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Silibina
19.
Arterioscler Thromb Vasc Biol ; 33(6): 1171-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23580142

RESUMEN

OBJECTIVE: Liver X receptors (LXRs) are oxysterol-activated nuclear receptors that are highly expressed in macrophages and regulate lipid homeostasis and inflammation. Among putative LXR target genes, lysophosphatidylcholine acyltransferase 3 (LPCAT3) involved in the Lands cycle controls the fatty acid composition at the sn-2 position of glycerophospholipids and, therefore, the availability of fatty acids, such as arachidonic acid (AA), used for eicosanoid synthesis. The aim of our study was to determine whether LXRs could regulate the Lands cycle in human macrophages, to assess the consequences in terms of lipid composition and inflammatory response, and to work out the relative contribution of LPCAT3 to the observed changes. APPROACH AND RESULTS: Transcriptomic analysis revealed that LPCAT3 was upregulated by LXR agonists in human macrophages. Accordingly, LXR stimulation significantly increased lysophospholipid acyltransferase activity catalyzed by LPCAT3. Lipidomic analysis demonstrated that LXR activation increased the AA content in the polar lipid fraction, specifically in phosphatidylcholines. The LXR-mediated effects on AA distribution were abolished by LPCAT3 silencing, and a redistribution of AA toward the neutral lipid fraction was observed in this context. Finally, we observed that preconditioning of human macrophages by LXR agonist treatment increased the release of arachidonate-derived eicosanoids, such as prostaglandin E2 and thromboxane after lipopolysaccharide stimulation, with a significant attenuation by LPCAT3 silencing. CONCLUSIONS: Altogether, our data demonstrate that the LXR-mediated induction of LPCAT3 primes human macrophages for subsequent eicosanoid secretion by increasing the pool of AA, which can be mobilized from phospholipids.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/genética , Ácido Araquidónico/metabolismo , Eicosanoides/metabolismo , Inflamación/genética , Macrófagos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Células Cultivadas , Dimetilsulfóxido/farmacología , Dinoprostona/metabolismo , Humanos , Inflamación/fisiopatología , Receptores X del Hígado , Macrófagos/efectos de los fármacos , Análisis por Micromatrices , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Receptores Nucleares Huérfanos/efectos de los fármacos , ARN Mensajero/análisis , Sensibilidad y Especificidad , Regulación hacia Arriba/genética
20.
FEBS Open Bio ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075841

RESUMEN

Glycerophospholipids, a primary component of cellular membranes, play important structural and functional roles in cells. In the remodelling pathway (Lands' cycle), the concerted actions of phospholipase As and lysophospholipid acyltransferases (LPLATs) contribute to the incorporation of diverse fatty acids in glycerophospholipids in an asymmetric manner, which differ between cell types. In this study, the role of LPLATs in osteoblastic differentiation of C2C12 cells was investigated. Gene and protein expression levels of lysophosphatidylcholine acyltransferase 2 (LPCAT2), one of the LPLATs, increased during osteoblastic differentiation in C2C12 cells. LPCAT2 knockdown in C2C12 cells downregulated the expression of osteoblastic differentiation markers and the number and size of lipid droplets (LDs) and suppressed the phosphorylation of Smad1/5/9. In addition, LPCAT2 knockdown inhibited Snail1 and the downstream target of Runx2 and vitamin D receptor (VDR). These results suggest that LPCAT2 modulates osteoblastic differentiation in C2C12 cells through the bone morphogenetic protein (BMP)/Smad signalling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA